Hydrologic Modeling Analysis from Land Use Scenario Changes in Quebrada Seca and Bermudez Watershed

Matías Adrián Chaves Herrera, Alejandra Rojas González, José Pablo Rojas, José Francisco Aguilar Pereira


During the last few years, the expansion of urban cover in the Quebrada Seca-Bermudez watershed has caused a series of floods that have damaged houses, bridges and other important infrastructure of the area. Hence local governments need a more precise description of these extreme rainfall events through reliable data and modeling. This study quantifies the discharge at several points in the Bermudez´s River watershed, based on 3 different storm durations and five different scenarios: three scenarios from previous years (2001, 2008 and 2012) and 2 forecasted scenarios for the year 2020 (one according to the projected urban growth and the other one based on local urban regulations). Land cover variations were determined using Lansat 7 ETM+ images. Both supervised and unsupervised classifications were applied to the satellite images and 6 common classes were obtained: forest, crops, pasture, urban, bare soil and industrial. The Curve Number was assigned based on this information and the soil data with a 1:20 000 scale resolution. A digital elevation model (DEM) with a 30 meters resolution was used to calculate the watershed parameters. Rainfall data over a period of almost 15 years from three meteorological stations were analyzed in order to obtain 2-, 5-, 10- and 25-year return periods. Discharge for all the scenarios was calculated with HEC-HMS program in order to evaluate the changes of urban growth. The results showed a rate of impervious cover of 27% for scenario 1 and 55% for scenario 2. The flow discharge increase for the year 2020 is expected to be between 1% to 14.9% for scenario 1.

Full Text:



  • There are currently no refbacks.