INTRODUCTION

When an "optimal" fuselage is added to an "optimal" wing, the performance of the combination may be disappointing due to wing-fuselage interference effects. There is extensive literature on this subject indicating the complexity of the problem, however, publications focussed on sailplane application are scarce. In order to get insight in the flow phenomena and to gather experimental data, also useful in sailplane performance estimation studies, a literature study and a wind tunnel investigation has been performed. The measurements were made in the low-speed, low-turbulence wind tunnel of the Department of Aerospace Engineering at the Delft University of Technology.

The wind tunnel models were provided by DFVLR Braunschweig. They were made and used in a previous wind tunnel experiment by R. Radespiel, Ref. 1. Some results of this study are gratefully quoted.

MODELS

Eight wing-fuselage combinations were obtained by combining three different fuselages with a wing at various positions, Fig. 1.

The basic fuselage, No. 1, is a 1:3 scale fuselage model of the well-known sailplanes ASW-19 and ASW-20. It was chosen because analysis of measured speedpolars indicated relatively low fuselage drag. Fuselages 2 and 3 have the same forebody as fuselage 1, but differ in contraction ratio behind the location of maximum thickness and have a 1/3 thinner tailboom.
the basic fuselage was shifted to a higher position than on the sailplanes mentioned before, resulting in fuselage 1, configuration 2. Similar wing positions are applied on fuselages 2 and 3, configuration 1. Configurations 2 and 3 are obtained by shifting the wing in two steps of 1/3 chord length backward.

Finally, fuselage 1 is provided with a mid-wing positioned 1/3 of the chord length forward in view of a two seat application.

In all cases, the wing is set at 1 degree incidence with respect to the tailboom axis.

Fuselage coordinates, position of wing leading edge and relevant data are given in Tables 1 to 3 and Fig. 2.

Fig. 3, deduced from measurements in Ref. 1, illustrates the effect of contraction ratio and wing location on the pressure distribution along the top and the underside of the fuselage.

<table>
<thead>
<tr>
<th>X_f</th>
<th>Y_m</th>
<th>Z_u</th>
<th>Z_m</th>
<th>Z_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-53</td>
<td>-53</td>
<td>-53</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>-12</td>
<td>-58</td>
<td>-82</td>
</tr>
<tr>
<td>120</td>
<td>47</td>
<td>20</td>
<td>60</td>
<td>102</td>
</tr>
<tr>
<td>220</td>
<td>71</td>
<td>-6</td>
<td>62</td>
<td>-126</td>
</tr>
<tr>
<td>320</td>
<td>89</td>
<td>90</td>
<td>-61</td>
<td>-142</td>
</tr>
<tr>
<td>420</td>
<td>102</td>
<td>-111</td>
<td>-59</td>
<td>-152</td>
</tr>
<tr>
<td>520</td>
<td>107</td>
<td>121</td>
<td>57</td>
<td>-123</td>
</tr>
<tr>
<td>620</td>
<td>106</td>
<td>121</td>
<td>51</td>
<td>-146</td>
</tr>
<tr>
<td>720</td>
<td>101</td>
<td>115</td>
<td>45</td>
<td>-135</td>
</tr>
<tr>
<td>820</td>
<td>94</td>
<td>107</td>
<td>37</td>
<td>-120</td>
</tr>
<tr>
<td>920</td>
<td>85</td>
<td>97</td>
<td>28</td>
<td>-106</td>
</tr>
<tr>
<td>1020</td>
<td>75</td>
<td>87</td>
<td>39</td>
<td>-92</td>
</tr>
<tr>
<td>1120</td>
<td>67</td>
<td>77</td>
<td>11</td>
<td>-80</td>
</tr>
<tr>
<td>1220</td>
<td>60</td>
<td>67</td>
<td>4</td>
<td>-68</td>
</tr>
<tr>
<td>1320</td>
<td>54</td>
<td>58</td>
<td>1</td>
<td>-59</td>
</tr>
<tr>
<td>1420</td>
<td>50</td>
<td>51</td>
<td>0</td>
<td>-51</td>
</tr>
<tr>
<td>2000</td>
<td>29</td>
<td>29</td>
<td>0</td>
<td>-29</td>
</tr>
<tr>
<td>2200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Coordinates of the fuselages (mm)

<table>
<thead>
<tr>
<th>X_f</th>
<th>Z_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>565</td>
<td>5</td>
</tr>
<tr>
<td>665</td>
<td>72</td>
</tr>
<tr>
<td>665</td>
<td>65</td>
</tr>
<tr>
<td>765</td>
<td>46</td>
</tr>
<tr>
<td>865</td>
<td>28</td>
</tr>
<tr>
<td>665</td>
<td>40</td>
</tr>
<tr>
<td>765</td>
<td>24</td>
</tr>
<tr>
<td>865</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2: Position of wing leading edge (mm)

<table>
<thead>
<tr>
<th>Fus. 1, Conf.</th>
<th>X_f</th>
<th>Z_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>665</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>665</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>765</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>865</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>665</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>765</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>865</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 3: Fuselage data.

Fig. 2: Geometric definitions of Table 1 and 2.
WIND TUNNEL, MODEL SUPPORT AND TEST EQUIPMENT

The low-speed low-turbulence wind tunnel is of the closed return type and has an interchangeable octagonal test section 1.80 m wide and 1.25 m high. The turbulence level during the tests was of the order of 0.04%.

The models were mounted upside down as shown in Fig. 4. The axis of rotation, located at 40% chord, passed through the tunnel walls and was attached to a frame. This frame was suspended to the six component balance system of the wind tunnel. The gap between the wing tips, axis of rotation and wind tunnel walls was about 1 mm.

In addition to balance measurements of the isolated wing, drag measurements were performed with a wake rake traversing in spanwise direction at a distance of 20% chord downstream of the trailing edge. The rake utilized 15 total pressure tubes equally spaced at 2.5 mm, and 2 static pressure tubes. All pressures were recorded by an automatically reading multi-tube liquid manometer. Transition of the boundary layer was detected by a stethoscope. For flow visualization, the oil film technique was used.
The characteristics of the wing and wing-fuselage combinations were measured at a Reynolds number related to the wing chord of 1.23×10^6. Some measurements were also performed at $Re_C = 0.7 \times 10^6$. However, the results, being similar to the former ones, are not presented here.

At several wing-fuselage combinations tests were performed with roughness on the fuselage nose and with simulation of a canopy - both a short and a long canopy - which was not flush with the fuselage surface.

Oil flow patterns and stethoscope measurements were made to study the flow behavior on the combinations. In addition, to study the flow behavior in the junction region, oil flow patterns were made with a wing mounted on a reflection plate.

DATA REDUCTION

All balance and wake rake data were on line reduced and the lift, drag and moment characteristics, denoted by C_L, C_D and C_M respectively, were plotted using the HP21MX-E computer of the Low Speed Laboratory.

Standard low-speed wind tunnel wall corrections, composed of solid and wake blockage, lift interference and wake-buoyancy, were applied according to Ref. 3 and 4. These corrections on the coefficients amount to 2% for the isolated wing and 5% for the wing-fuselage combinations. The correction on the angle of attack, being less than 0.1 degree was neglected.

The drag due to wing-tip, tunnel-wall interference was derived from balance and wake rake measurements of the isolated wing, Fig. 5. The wake rake was set at a spanwise position where the drag was equal to the mean of the drag distribution measured along 1.65 m span at three angles of attack within the low drag region ($\alpha = -1.5^\circ$, 0° and 5°).

In this region the drag difference between wake rake and balance measurements, plotted against the lift coefficient squared, is linear as shown in Fig. 6, indicating an effective aspect ratio of 115.

Beyond the low drag range the position of transition strongly depends on local airfoil shape quality, and a relatively high local drag coefficient may result as shown by the wake rake measurements. Similar results with the same linear
relationship were obtained at
Re = 0.7 * 10^6. Hence, all balance
measurements were corrected for
wing-tip, tunnel-wall interference by
taking into account, at corresponding
angle of attack, a drag value according
to this straight line relationship. As
an example, Fig. 7 shows the mean
profile drag of the isolated wing and
the drag characteristics of the basic
fuselage 1, configuration 2. In
addition, the lift and moment charac-
teristics are given.

These coefficients, based on the model
wing surface of 0.54 m^2 and model wing
chord of 0.30 m, were used in analyzing
the effects of fuselage shape and wing
location with respect to the isolated
wing characteristics, and the effects of
disturbances on the fuselage forebody.

In actual situations these effects are
smaller due to the larger reference wing
area. Hence, for sailplane performance
estimation, the results were converted
to a wing area of 10 m^2 which is
typical for a high performance 15 m span
sailplane. Assuming this wing has the
airfoil characteristics as measured for
the isolated wing, Fig. 7 also shows the
characteristics converted to 10 m^2.

RESULTS

1. Wing-fuselage Interference Effects

To provide insight in the experimental
results and related wing-fuselage inter-
ference effects, a description of the
four main aerodynamic effects will be
given, as compiled from Refs. 5 to 12.

a. Displacement Effects.
Due to the displacement of the fuselage
the streamwise velocity distribution on
the wing changes towards the junction,
depending on the relative dimensions of
the fuselage and wing and resulting
curvature of the intersection lines.
For instance, the velocity in the
junction of a symmetrical wing, attached
in a midwing position to a cylindrical
 fuselage, both set at zero angle of
attack, is reduced except near the
leading and trailing edges. Since the
velocity distributions on upper and
lower surface are equal, no lift

results. If the ratio of wing thickness
and fuselage diameter tends to zero,
which represents the case of a wing
attached to a reflection plate, the
induced velocities vanish.

b. Effects of Asymmetry.
If the previous wing is shifted to a
high-wing position, the intersection
lines along the upper and lower surface
differ. As a consequence, the velo-
cities in the junction are decreased on
the upper side and increased on the
lower side. The lift curve is decreased by
a more or less constant differential C_L.
For a low-wing arrangement the opposite
is true. Similarly, asymmetric
displacement effects occur when the wing
is cambered, or set at an angle to the
fuselage, or shifted in longitudinal
direction on a waisted fuselage.

c. Lift effects.
Consider again the cylindrical fuselage
at zero angle of attack combined with a
symmetrical wing in a mid-wing position,
now set at an angle to the fuselage.
Compared to the isolated wing, the
interference reduces the spanwise and
chordwise loadings towards the wing
roots. The pressure distribution and
circulation around the wing roots are
transferred upon the fuselage in such a
way that the loading decreases approxi-
mately elliptically between the junction
and the axis.

When rotating the fuselage to the same
angle of attack as the wing, there is a
strong crossflow (named alpha flow) and
hence an upwash along the sides of the
fuselage which increases the lift curve
slope. For instance, in the case of a
circular cylindrical fuselage the angle
of attack at the wing roots is doubled
because the velocity component which
crosses the cylinder is doubled at the
sides. Hence, the spanwise lift
distribution shows peaks at the wing
roots, and the wing roots show suction
peaks at the leading edge. Again, if
the wing is not in the midwing position,
effects of asymmetry are introduced.
For instance, if the fuselage has the
same angle of attack as the wing, the
- lift at the wing roots decreases when
the wing is shifted to a high (or low)
wing position due to the decrease of the angle of attack induced by the fuselage.

d. Effects of Viscosity.
The boundary layer on the fuselage is not able to overcome the adverse pressure gradient in front of the wing root leading edge and separates from the surface along a separation line at some distance around the junction. The separated surface rolls up into a vortex wrapped around the wing root (and, as will be shown, a second vortex is present closer to the junction). This viscous interference affects the lift at the junction in the same order as the previously described inviscid interference effects, but the influence extends far less in spanwise direction.

At higher angles of attack the flow separates at the rear part of the junction, affected by the induced angle of attack and the shape of the junction. These separated areas increase with angle of attack and a pair of vortices appear leaving the wing upper surface.

While there is extensive literature on wing-fuselage interference, relatively little has been published about the induced drag of wing-fuselage combinations. A difficulty in modern theories is that it is not known how the Kutta condition should be fulfilled. From classical theory, Ref. 12, the relation

\[C_{D_{\text{wf}}} = C_{D_{\text{ell}}} \left(\frac{1}{1 - \left(\frac{d}{b} \right)^2} \right)^2 \]

\[\text{b = span} \]
\[\text{d = fuselage diameter} \]

indicates an induced drag increment of only 0.5% for a 15 m span mid-wing configuration with a fuselage of 0.75 m diameter. A low additional induced drag is also obtained with the practical estimation procedure given in Ref. 5. However, at high lift coefficients flow separation in the junction affects the lift distribution and consequently the induced drag. In the next analysis of the experimental results the induced drag contribution is left out of the discussion.

2. Experimental Results

Now to the experimental results: Fig. 8 gives an indication of the largest
Fig. 9b: Drag differences with respect to the isolated wing, based on model wing area

Fig. 9c: Moment differences with respect to the isolated wing, based on model wing area
The lift of the combination is generally lower than the lift of the isolated wing because the fuselage and interference generates less lift than the portion of the wing covered by the fuselage. If this portion decreases by shifting the wing upwards or backwards, or because of a higher fuselage contraction ratio, the lift decrement decreases.

The lift-curve slope of the combinations is generally higher than the lift-curve slope of the isolated wing due to alpha flow. However, for the most rearward wing location on fuselage 2 and for the intermediate wing location on fuselage 3, there is an extra loss of lift beyond about 3 degrees angle of attack. For the most rearward wing location on fuselage 3, this loss of lift starts at an even lower angle of attack. These combinations also show the highest drag increase with angle of attack. Obviously, the accumulation of boundary layer material coming from the forebody and flowing over the upper surface of the fuselage and junction, running up against the successive adverse pressure gradients of the fuselage contraction and the wing, leads to thick boundary layers and eventually early separation in the junction.

(Separation at the trailing edge of the isolated wing starts at about 5 degrees angle of attack.) If the fuselage fits to the streamlines of the wing, cross-flow effects are minimized. (This design principle of streamline shaping was applied by Muttray in 1934, Ref. 11. Hence, better results for fuselage 2, configuration 1 at 5 degrees angle of attack, in comparison to configuration 3, are largely due to better fitting of the forebody to the streamlines of the wing, as shown in Fig. 10.

Another effect due to alpha flow is the drag increase around -2 degrees angle of attack for all combinations. At this angle the drag of the isolated wing is low and at the lower boundary of the low drag bucket. On the combinations, however, the wing root areas are effectively at a more negative angle of attack, thus operating below the low drag bucket and causing the drag increase. At -3 degrees angle of attack the complete wing has turbulent flow on the lower surface as on the isolated wing, and the drag difference is smaller again. The drag increase of the combinations with fuselage 2 or 3 is at best 2/3 of the drag increase with fuselage 1. Since fuselage drag is mainly due to skin friction, the reduction in wetted surface for the waisted fuselages is primarily responsible for this drag reduction.

Finally, the differences in pitching moment coefficient about the quarter chord line show the destabilizing effect when a fuselage is added to the wing. This effect increases with angle of attack and with the length of the forebody.

In order to evaluate the effects of the various combinations on sailplane performance, the results were converted to a standard wing area of 10 m², and compared at equal values of the lift coefficient (i.e. flight speed). Similar to Fig. 8, an indication of the largest differences is given in Fig. 11. And similar to the previous analysis, differences in drag characteristics are presented, now with respect to the worst combination of fuselage 1, configuration 2.

The results, obtained by interpolation and plotted on a large scale in Fig. 12, show no practical drag difference for the two wing locations on fuselage 1. A significant and almost equal reduction has been obtained with the waisted fuselages 2 and 3. A rearward wing location has an advantage at the lower lift coefficients, but a disadvantage at high lift coefficients for reasons described before. Fuselage 2, configu-
Fig. 11: Characteristics of the isolated wing and of two combinations, based on a wing area of 10 m²

Fig. 12: Drag differences with respect to fuselage 1 configuration 2, based on a wing area of 10 m²
ration 2 is aerodynamically equal to fuselage 3, configuration 1. As always, other aspects (as for instance the structural and aerodynamic consequences of negative wing sweep for center of gravity reasons) have to be considered as well in choosing the proper combination.

3. Flow Phenomena

The laminar boundary layer on the forebody of the fuselage is not able to run up far against the adverse pressure gradient caused by the contraction and induced in front of the wing root, and turns turbulent as shown in the flow pattern of Fig. 13. In the case of the rearward wing locations on fuselage 3, where both adverse pressure gradients are separated, the steep pressure gradient due to contraction causes a laminar separation bubble surrounding the fuselage. Occasionally, a grain in the oil substance caused a turbulent wedge as shown in Fig. 14. The large increase in turbulent area demonstrates the detrimental effect of disturbing the forebody flow.

The curved transition line on the wing upper surface in Fig. 15, interrupted by turbulent wedges again, indicates the effect of alpha flow. Turbulent separation occurs in front of the wing trailing edge and the rotating accumulation of oil in the junction fed from the separated trailing edge, Fig. 16, shows the origin of the vortices.
On the lower surface, laminar flow followed by a laminar separation bubble, is present up to the junction flow, Fig. 17. The persistency of the bubble, illustrated by its presence between the turbulent wedges and the corner flow in Fig. 18, was noticed before in an experiment where air was blown through small orifices in a wing, periodically spaced in spanwise direction, to eliminate the laminar separation bubble, Ref. 13.

A complicated flow pattern was observed on the fuselage around the wing root, and a similar pattern was found on the tunnel wall around the wing tip when the gap was sealed. In order to eliminate the effect of gravity on the oil streaklines - there was some doubt about this effect - a more detailed flow investigation was performed with a rectangular wing with aspect ratio 7.5 and wing section NACA 642-A015, mounted vertically on a large reflection plate near the ceiling of the test section. The boundary layer on the plate was turbulent due to a transition strip near the leading edge. Fig. 19 shows a flow pattern made at 10 degrees angle of attack and a Reynolds number of 0.8×10^6. The picture, taken after the wing was removed, clearly shows the dividing streamline in front of the airfoil which ends in a singular point on the separation line. According to Ref. 7 the separated surface rolls up into a vortex wrapped around the wing root. As shown in the picture, a second vortex is present closer to the junction, which merges with the first one on the upper surface. A separated region behind about 50% chord upper surface is clearly marked.

4. Disturbance of the Forebody Flow

In order to measure the drag penalty due to disturbances on the fuselage and to verify a method to calculate the critical roughness height, several combinations were provided with artificial roughness on the forebody. Fig. 20 shows results for different types of roughness at 5% of the fuselage length. Fully turbulent flow and equal drag coefficients were obtained with a tape of 2.25 mm thickness with digged-in
bumps of 1 mm height every 5 mm, or with a row of squares of tape with the same thickness and measuring 5 mm on the sides. The results are simply denoted by "roughness." A 0.16 mm thick flat tape starts to be effective at Reₐ = 0.7 \times 10⁶, and is fully effective near Reₐ = 2 \times 10⁶. Similarly, a 0.25 mm thick tape is fully effective at about Reₐ = 1 \times 10⁶.

These results are in fair agreement with calculations according to the method of Ref. 14 if the proper roughness Reynolds numbers are applied, Fig. 21. In the left part of this figure, the maximum height of roughness which can be accepted as having no effect upon the drag is shown; the roughness Reynolds number is applicable in case of two dimensional excrescences as shown in Ref. 15. Similarly, the right part of the figure shows the minimum height of roughness which guarantees transition without adding undue extra drag due to it; the roughness Reynolds number is valid for roughness bands. (A slightly lower value, /Reₐ = 24.5, is relevant in calculating the permissible - not disturbing - height of isolated excrescences). The figures indicate that in actual practice (scale factor 1:3) the flow will be laminar up to high flight speed (Reₐ = 3 \times 10⁶) when the roughness height is below a few tenths of a millimeter.

A canopy front edge which protrudes from the fuselage surface, producing a step of 0.75 mm height, was simulated by sticking 0.25 mm thick tape to the surface. Both a long and a short canopy were simulated, Fig. 24. The results, as illustrated in Figs. 22 and 23, show a drag increase which is roughly proportional to the increase in turbulent area, and independent of the angle of attack. The Reynolds numbers at which the step starts to produce turbulent flow or is fully effective, are in fair agreement with the calculations again. In conclusion, if flow disturbance by the canopy front edge is unavoidable, the short canopy is preferable because the edge is closer to the natural transition position of the smooth fuselage and in an area where the laminar boundary layer is less sensitive to roughness than in the nose region. Finally, Fig. 24 shows the drag values for the three different fuselages and equal wing position, converted to 10 m², indicating the trend of the drag and drag increase due to a (fully) disturbing canopy front edge or complete turbulent fuselage flow.

CONCLUDING REMARKS

Some general qualitative conclusions, useful in designing a wing-fuselage combination for a high performance sailplane, are summarized.
To minimize crossflow effects and postpone separation in the rear part of the junction, the fuselage shape should be fitted to the streamlines of the wing produced at a relatively high lift coefficient. The pressure gradients along the top of the fuselage due to contraction and due to the wing may be combined with each other to postpone transition. On the fuselage, underside contraction should start behind the pilot’s seat but not later than the (disturbing) wheel doors. The effects of contraction ratio and wing location have been shown in this paper.

The flow in the junction is anything but laminar. Hence, great care has to be taken when those laminar wing airfoils are applied which have separation problems in case of turbulent flow conditions. As shown in Ref. 16, several well-known airfoils have these problems when the leading edge is contaminated by insects or wetted by rain. By properly modifying the airfoil towards the junction, or by applying wing-fuselage fairings (thus manipulating the pressure gradients and load distribution by airfoil extension), these problems can be alleviated. In addition, a properly shaped leading edge fairing eliminates the local stagnation region and, hence, suppresses the formation of the vortices around the junction, as shown in Refs. 17 and 18.

In designing wing-fuselage combinations and fairings, basic potential flow information, obtained from a three-dimensional panel method, is indispensable. As in airfoil design, an inverse method such as the panel-like method of Ref. 19, developed for the design of a wing with prescribed pressure distribution and geometric constraints in the presence of a fuselage, is of great use. Application of these methods, together with experience as obtained in the present investigation, may lead to improved wing-fuselage combinations.

ACKNOWLEDGEMENT

The authors are grateful to the Staff of the DFVLR Institut fur Entwurfsaerodynamik for providing the wind tunnel models, and to Mr. J.J.H. Blom for preparing the airfoil streamline pattern computer program.

REFERENCES