“ULTRA-LIGHT”
AND
“LIGHT” SAILPLANES
by Piero Morelli, Politecnico di Torino, Italy
Presented at the XXV OSTIV Congress, St. Auban, France

Introduction

The objective of flying by exploiting the air motions
(a) as long as possible
(b) as far as possible
(c) as fast as possible
(d) as often as possible
(e) as cheap as possible
(f) as free as possible

has been attempted and realized in different ways.

At the start of the sport of soaring the main goal was
(a) (endurance), based on slope soaring and bungee
launching.

When the possibility of thermal soaring was discov-
ered and winch launching and aero-tow were intro-
duced, the interest shifted towards (b) (cross-country
distance), quickly followed by (c) (speed), the two
objectives being intertwined.

The development of hang-gliders and paragliders,
aimed at (e) (low cost) and (f) (freedom), started late
but very successfully.

The development of powered sailplanes also aims at
(f) (freedom), in particular: freedom from launching
equipment and means of retrieving.

The development of “ultra light” and “light”
sailplanes (the object of this paper) also aims at (e) (low
cost) and (f) (freedom): freedom from expensive
launching equipment, freedom from heavy bureau-
cracy (for instance, less demanding certification pro-
cesses), freedom from the need of airfields.

The recent introduction of the “World Class” can be
seen as a compromise between (a), (b), (c) and (e).

It is interesting to note that the objective (d), to
soar as often as possible, i.e., the ability to exploit
very weak soaring conditions, has received little
attention so far.

1. A gap.

The objective of improving hang glider performance
on one hand, and the effort to produce cheaper con-
tventional sailplanes on the other hand, has produced a
new breed of sailplanes which are often mentioned as
“ultra-light” or “light” sailplanes.

Under this name, however, we find sailplanes that
differ considerably in purpose, design and perfor-

VOLUME XXII, NO. 2
For a couple of decades this development has taken place in America in a more significant and detectable way than in Europe.

The distinction made between “ultra-light” sailplanes and “light” sailplanes appears to be more clear cut in America, the former being more or less a development upwards of hang gliders (within the FAR 103 empty weight limit of 70 kg), the latter over that limit and sometimes approaching the features of a conventional sailplane.

The gap between hang gliders and conventional sailplanes and how the so-called “ultralight” and “light” sailplanes tend to fill this gap are shown in the plots of an index of performance, L/D max vs. wing span, b (Figure 1), empty weight, Wₐ (Figure 2), max. weight, Wₘₐₓ (Figure 3).

Some of the types appearing in these plots are, more or less, high performance hang gliders (Swift, Carbon Dragon,...) although, due to weight increases in the development of the machine, the capability to be foot launched and/or foot landed has been lost in most cases.

The performance and the weight of other types, downgraded versions of the conventional sailplanes (Monarch, Tempest, Superflutter,...) are strongly affected by the requirement of being designed for homebuilding.

Answers to a questionnaire promoted by the OSTIV Sailplane Development Panel in 1996 gave the results summarized in the table following this paper.

Far from being complete, this inquiry shows that some kinds of regulations relating to ultra-light sailplanes exist in the USA and Italy, a proposal (not known to the author whether already officially adopted) in Germany, where an empty weight limit of 70 (FAR 103), 80, 90 kg, respectively, is set for single seaters.

These limits appear to be more applicable to upgraded hang-gliders than to downgraded conventional sailplanes. In fact (Figure 2) only the Swift seems to comply with FAR 103, whereas the Monarch, Superflutter, Tempest and the latest versions of the Carbon Dragon do not.

It should be noted, therefore, that a new breed of gliders is emerging, for which speed or distance are not the top design priorities, but rather low cost, capability to exploit weak soaring conditions, recreational flight, suitability for construction from kits are.

The Carbon Dragon is perhaps the most representative type so far.

There is a high potential...
of development with this class of sailplanes. Let’s have a closer look at some of them.

2. A brief review.
SWIFT (stands for Swept Wing with Inboard Flap Trim) [1] [2]
Path control by flaps. No weight shift. Control through elevons and ailerons. The empty weight of 50 kg is an early datum not including the pilot fairing and the emergency parachute.

Figure 3.

SPECIFICATIONS
- Wings made up of composite materials: skin in sandwich kevlar/epoxy
- spar in carbon epoxy laminated under vacuum
- Cages inCrossan metal (4130) and aluminum 2017 anodized
- Controls are driven by push pull tubes and bellcranks bellcrank on booms
- Wing span: 11.8 m 39 ft
- Wing area: 12.5 m² 135 sq ft
- Aspect ratio: 11.3:1
- Weight: 50 kg 110 lbs
- Maximum L/D ratio with pilot faaring 25 without faaring 20
- L/D at 90 km/hr (60 mph) 15
- Minimum sink rate 0.7 m/s 1.56 ft/s
- Vbed 115 km/hr 72 mph
- Rated load: 6 g/4 g
- The SWIFT is delivered with a handling gear (wheel and skids), a harness, a poussum parachute and a speedmeter.
- A mandatory two days training program is included in the purchase price of each SWIFT.

Figure 4.

Figure 5.
3. Exploitation of “micro lift”

The objectives of low cost of both the machine and its operation, the possibility of homebuilding from plans or kits, naturally led to small, light and simple sailplanes.

The combination of a low wing loading (W/S) and a high CLMAX (see the Carbon Dragon, in particular) produces a low sinking speed and a small circling radius.

Perhaps in a somewhat serendipitous way, it was discovered that some of these light sailplanes are able to exploit weak air motions, in particular at low altitudes, which are out of reach of both hang-gliders and conventional sailplanes [5] [6] [7].

As underlined by Bruce Carmichael [9], the most powerful parameter that affects the minimum sinking speed (W_min) is the so-called “span squared loading,” i.e., gross weight (W) divided by the square of the wing span (b), W/b^2.

The value W/b^2 for typical standard class sailplanes ranges from 1.61 to 2.14 (weight in kg and span in m). A diagram of W/b^2 versus wing span presented by Carmichael [9] (Figure 13) clearly shows the powerful effect of wing span when associated to low weight as in the case of human powered aircraft. However it also shows how well placed the very light Carbon Dragon is, notwithstanding the small span.

Sinking speed may also be correlated with W/b^2 [9]:

$$W_{min} = 0.17 + 0.25 \frac{W}{b^2} \text{ (m/s)}$$

where W in the above formula is expressed in kg and b

TEMPER [4]

Main data:

- b = 13 m
- A = 9.5 (wing aspect ratio)
- W_e = 100 kg
- W_max = 204 kg
- W_min = 0.81 m/s at 48 km/h
- L/D_max = 20 at 64 km/h

(Figure 6)
(Figure 7)
According to data kindly provided by Bruce Carmichael and from [8], it is "intended as the next step beyond the Carbon Dragon for exploiting micro lift." The main specification data are: \(b = 15 \text{ m} \), \(A = 19.2 \), \(W_e = 68 \text{ kg} \) (probably optimistic), \(W_{\text{max}} = 159 \text{ kg} \), \(W/S = 13.6 \text{ kg/m}^2 \), \(W/b^2 = 0.144 \text{ lbs/ft}^2 \), \(L/D_{\text{max}} = 35.4 \), \(w_{\text{min}} = 0.42 \text{ m/s} \) and wing \(CL_{\text{MAX}} = 2.2! \)

It will be interesting to see the performance of this ultra-light sailplane. It demonstrates the rising interest in the USA for the exploitation of weak conditions in contrast to the long established tendency of high speed flying, the floaters against the racers!

Another claim for low sink aimed at exploiting weak conditions comes from von der Kreek [10].

Here, the importance of a relatively larger span is emphasized and a high wing loading is tolerated. The calculated sinking speed does appear to be very low (below 0.5 m/s). The circling radius, however, appears to be too large for micro lift exploitation.

4. Airworthiness Requirements: Yes or No?

The information available to the author on existing regulations or requirements in various countries is very limited and unofficial.

Looking again at the table at the beginning of the paper, ultra-light sailplanes exist only in a few countries. Of course, hang gliders have been kept out of the picture.

As already stated, the USA, Italy and possibly Germany have set an empty weight limit of 70 (FAR 103), 80 and 90 kg, respectively, for single seaters.

Bruce Carmichael notes: "We are still governed by Part 103 with a maximum empty glider weight of 155 lbs if we wish the freedom from government regulation enjoyed by the hang gliders. Efforts have been made to increase this without success."

JAA has a clear standing (Figure 15): JAR-22 is not applicable to ultra-lights. Not too bad: could you imagine JAR-22 applied to a Carbon Dragon or to a Ciba Hawk? The empty weight of the glider would rise to such values that micro-lift exploitation would be impossible!

In the actual situation, therefore, a void also exists from this standpoint between hang gliders and conventional sailplanes, i.e., between full freedom and heavy restraints.

If an expansion is wanted for these attractive "light" sailplanes beyond the boundaries of home building and of "experimental" categories and the like, one way...
to go about it could possibly be to promote sensible reasonable regulations.

Who does not see a danger there? When you opt for regulations you know where you start but not where you will get to. The loss of a certain degree of freedom could certainly be a price to pay.

From the safety point of view it is hard to deny that the applicable airworthiness standards should not be the individual choice of any designer or homebuilder or user, more so if the aircraft is intended for series production.

At least basic commonly agreed guidelines should be available as advisory material.

The adoption of airworthiness requirements named Luftfahrtvorschriften fu\'e Gleitflugzeuge, LFG, is under consideration in Germany. Proposed by Hans Grannemann [11] they are intended as being applicable to single-seaters up to 90 kg empty weight and two-seaters up to 135 kg (Figure 16).

These requirements are laid down in a similar way to JAR-22 but, of course, they are much less demanding. For instance, limit load factors are +4, -2 instead of +5.3, -2.65 (cat.U). \(V_{D\min} \) is given as 2/3 of that specified by JAR-22 at equal \(C_{D\min} \) and \(W/S \).

It is not clear to the author if such requirements should be a matter of concern for the German Aero Club or for the German airworthiness authority, LBA.

This is a delicate and controversial matter to be taken, however, into serious consideration.

SUPER FLOATER [4]

Main data:
- \(b = 11.6 \text{ m} \)
- \(A = 8.44 \)
- \(S = 15.6 \text{ m}^2 \)
- \(W_e = 81 \text{ kg} \)
- \(W_{\max} = 181 \text{ kg} \)
- \(W/S_{\max} = 11.6 \text{ kg/m}^2 \)
- \(V_{\text{NE}} = 96 \text{ km/h} \)
- \(V_s = 37 \text{ km/h} \)
- \(L/D_{\max} = 15 ? \)
- \(w_{\min} = 0.91 \text{ m/s} \)
5. Is FAI concerned?
Certainly it is!
The FAI structure tries to cover all air sports. This is not easy in an ever changing scenario.

When a new air sport or a new way of doing a given air sport appears, the problem arises whether a new Commission should be set up or an existing Commission be given the task of dealing with the new activity.

When IGC was asked: “do you think that glider aerobatics belongs to you?”, the motivated answer was “no,” and glider aerobatics was assigned to the FAI Aerobatics Commission.

When, not many years ago, IGC was asked: “do you think that motorgliders are of your concern?”, the motivated answer was “yes”, and a Motorgliding Sub-committee was created within IGC.

Now, what about “ultra-light” and “light” sailplanes? Do the former belong to the Hang gliding Commission, and do the latter belong to IGC? This has not been decided so far.

The introduction of “light” sailplanes among conventional sailplanes, by far the main concern of IGC, would probably meet with scarce interest and competence of the IGC delegates, most of them being strongly interested in racers and, presumably, much less or not at all in floaters.

What about the FAI Homebuilt Aircraft Commission? In this case the concern would be limited to homebuilt aircraft.

Maybe an ad hoc Commission would be a better solution. Who knows?

What really matters is that the potential value of these new emerging sailplanes is understood, appreciated and action should be taken.

Our American friends are well on the way. The country where hang-gliding was born as a modern air sport, is also the country where the pioneering activity of these new developments is taking place. There, the idea of establishing a new “Light Sailplane Class” has already been launched [12].

Through its prestige and the competence of its specialized Commissions, by orientating towards the achievement of records, badges and competitions, the FAI has great power to promote and develop air sports.

The opportunity to rejuvenate the sport of soaring

The introduction of “light” sailplanes among conventional sailplanes, by far the main concern of IGC, would probably meet with scarce interest and competence of the IGC delegates, most of them being strongly interested in racers and, presumably, much less or not at all in floaters.

What about the FAI Homebuilt Aircraft Commission? In this case the concern would be limited to homebuilt aircraft.

Maybe an ad hoc Commission would be a better solution. Who knows?

What really matters is that the potential value of these new emerging sailplanes is understood, appreciated and action should be taken.

Our American friends are well on the way. The country where hang-gliding was born as a modern air sport, is also the country where the pioneering activity of these new developments is taking place. There, the idea of establishing a new “Light Sailplane Class” has already been launched [12].

Through its prestige and the competence of its specialized Commissions, by orientating towards the achievement of records, badges and competitions, the FAI has great power to promote and develop air sports.

The opportunity to rejuvenate the sport of soaring
through proper action in this field of “ultra-light” and “light” sailplanes, should neither be missed nor delayed.

Acknowledgments

The author is most indebted to Bruce Carmichael and Dan Armstrong, not only for providing a wealth of data relating to American “ultra-light” and “light” sailplanes, but also for the useful hints and ideas which have enriched this paper.

The author is also grateful to Hans Grannemann for providing precious information on airworthiness initiatives under way in Germany.

REFERENCE