ON THE ADAPTIVE CHARACTERISTICS OF BIRD FLOCKS: SMALL BIRDS FORM MIXED FLOCKS

Cristina Sainz-Borgo · Sheina Koffler · Klaus Jaffé

1 Departamento de Biología de Organismos, Universidad Simón Bolívar, Apartado Postal 89.000, Caracas, Venezuela.
2 Departamento de Ecología, Instituto de Biociências, Universidade de São Paulo, Brazil.
E-mail: Cristina Sainz-Borgo · cristinasainzb@usb.ve

Abstract · Mixed bird flocks are very diverse in size, number of species, habitats, and interactions between members, however there are few reports about which morphological characteristics of species lead to flocking behavior. We conducted a literature search in order to test the effect of body weight on flocking behavior, and performed an ordinal regression with flocking category as the dependent variable. Data from 1289 species belonging to 116 families from 17 orders were evaluated. A strong correlation was found between species’ total length and body mass with the types of flocks that they form: species forming mixed flocks tended to be smaller than species that foraged solitarily, in pairs or in monospecific flocks. The best predictors for flocking behavior were mass and habitat, we found no significant effect of region or migratory behavior. This result is congruent with an adaptive role of flocks balancing inter-specific competition and anti-predator protection. These findings add to reports on similarities in foraging behavior and in alarm calls among birds in a flock, suggesting co-evolutionary dynamics acting on species of mixed flocks.

Resumen · El valor adaptativo de las bandadas mixtas: aves pequeñas se agrupan en bandadas mixtas
Las bandadas mixtas son muy diversas en tamaño, número de especies, hábitats e interacciones entre los miembros, sin embargo, existen pocos reportes de correlaciones morfológicas entre los mismos. Se realizó una búsqueda en la literatura para determinar el efecto de la masa corporal en el comportamiento de formación de bandadas, realizándose con dichos datos una regresión ordinal con la categoría bandada como variable dependiente. Se recolectó información de 1289 especies, pertenecientes a 116 familias y 17 órdenes. Se encontró una fuerte correlación entre la masa corporal de las especies dependiendo del tipo de bandada que conformaban; las especies que realizaban bandadas mixtas tendían a pesar menos que las especies que forrajeaban solas, en pareja o en bandadas monospecíficas. El mejor predictor para el comportamiento de bandada fue la masa y el hábitat, mientras que no se encontró efecto de la región, hábitos migratorios o acuáticos. Este resultado es congruente con el rol adaptativo de las bandadas, donde se encuentran involucrados la competencia interespecífica y las ventajas antidepredadoras. Estos resultados junto con registros similares en hábitos de forrajeo y llamadas de alarma entre los miembros de una bandada, sugieren una dinámica coevolutiva que actúa sobre las especies que conforman bandadas mixtas.

Key words: Antipredator strategies · Body mass · Mixed flocks · Monospecific flocks

INTRODUCTION

Bird foraging groups can be divided into flocks and aggregations. Aggregation members remain together due to incidental factors such as food, or other key resource; while flocks are groups whose cohesion depends on the social interactions of its members (Powell 1974). Hutto (1994) define flock as a group of two or more individuals, of the same or different species found in a range of 20–30 m that move together.

Individuals participating in flocks balance costs and benefits. Benefits are mainly two: a reduction of the probability of suffering predation and a higher foraging efficiency. The first may be achieved due to a dilution effect (Krebs 1977, Dehn 1990, Bednekoff & Lima 1998), confusion effect (Hamilton 1971, Jeschke & Tollrian 2007, Ioannou et al. 2008), a higher probability of detection of the predator due to higher surveillance rates (Lack 1954, 1968, 1970, Caraco 1980, Glück 1987, Goss-Custard & Durell 1988, Popp 1988), and the coordinated response of individuals that reduce the vulnerability to predators (Morse 1970). The second benefit, higher foraging efficiency (Powell 1985, Beauchamp 2006, Morand-Ferron & Quinn 2011), may be due to cross communication of newly discovered food sources or lower rate of vigilance per individual. However, flocking in birds also generates disadvantages: increased competition and aggression that decrease feeding efficiency, and greater attraction of predators (Hutto 1988, Terborgh 1990).

Flocks may be monospecific or mixed, mixed flocks being composed by individuals of different species. Mixed-species flocks are a common phenomenon in many habitats (Jullien & Clobert 2000, Sridhar et al. 2009), and vary in size, permanence of the individuals, and composition and interactions between species (Munn 1985, Greenberg 2000). The high frequency of mixed flock in birds is considered an optimal trade-off between predator protection and feeding efficiency (Terborgh 1990).
In our study, we became interested in exploring the possible relationship between flocking behavior and bird size because there is evidence that individuals of small-sized species are preferred by predators (Fitzgibbon, 1990, Cooper & Stankowich 2010). Are there advantages of joining a mixed flock over a monospecific flock? Is it an opportunistic strategy? In birds, small species are often at a greater risk of predation (Buskirk 1976, Thiollay & Jullien 1998); therefore, they might obtain greater benefits of joining a flock than individuals of larger species. Under the assumption that mixed flocks provide better protection from predators, we would predict that individuals of the species that form mixed flocks have a smaller size than those species that form monospecific flocks or that forage alone. The aim of this study was to review the literature to determine quantitatively the possible relationship between body mass and the likelihood of birds to participate in mixed or single species flocks.

MATERIALS AND METHODS

We conducted a literature search using the Web search engine Google Scholar, and field guides (Hilty 2003, Phelps & Meyer de Schauensee 1994). This was done to obtain information on bird species regarding three kinds of social behavior: 1) foraging in monospecific flocks, 2) foraging in mixed flocks, and 3) foraging solitary or in pairs. For each species we also retrieved information on: average body mass (g), main region of distribution (Africa, Asia, Australia, Neartic, Neotropical, Paleartic), habitat (forest, grassland, sea, or wetland), migratory habits (migratory or resident), and if it is an aquatic or terrestrial species.

In order to test the effect of average body mass on flocking behavior, we performed an ordinal regression with flocking category as the dependent variable. Four categories were employed to discriminate behaviors (in increasing complexity order): (a) no flocking or pairs, (b) monospecific flocks, (c) mixed or monospecific flocks (facultative behavior), and (d) mixed flocks. Species exhibiting both solitary and flocking behavior were included in the flocking category. A full model was constructed including body mass, region, habitat, migratory habits, and aquatic habits as independent variables, allowing to test the effect of body mass while controlling for the other effects. We log-transformed average body mass to account for the positive skew of this trait, and family nested in taxonomic order were included as random factors, to account for phylogenetic effects. The full model was compared to reduced models excluding each of the predictors, using likelihood ratio tests ($\alpha = 0.05$). This procedure was performed until a best model was found, where the exclusion of any predictor significantly decreased the model’s log-likelihood (Zuur et al. 2009). Significance of the phylogenetic effects was tested contrasting the full model with random

Table 2. Full model with all tested predictors describing flocking behavior and best selected model across 1289 bird species. Likelihood-ratio tests (LRT) were employed to compare a full model with reduced models and p-values were obtained using a χ² distribution.

<table>
<thead>
<tr>
<th>Bioregion</th>
<th>Solitary</th>
<th>Monospecific</th>
<th>Mixed</th>
<th>W_mean/W_mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neotropic</td>
<td>61 (193)</td>
<td>249 (168)</td>
<td>29 (404)</td>
<td>0.12</td>
</tr>
<tr>
<td>Africa</td>
<td>86 (17)</td>
<td>45 (8)</td>
<td>30 (41)</td>
<td>0.67</td>
</tr>
<tr>
<td>Asia</td>
<td>78 (40)</td>
<td>35 (26)</td>
<td>23 (65)</td>
<td>0.66</td>
</tr>
<tr>
<td>Nearctic</td>
<td>90 (17)</td>
<td>235 (38)</td>
<td>51 (82)</td>
<td>0.22</td>
</tr>
<tr>
<td>Paleartic</td>
<td>62 (38)</td>
<td>38 (33)</td>
<td>101 (52)</td>
<td>2.66</td>
</tr>
<tr>
<td>Australia</td>
<td>164 (37)</td>
<td>88 (7)</td>
<td>21 (37)</td>
<td>0.24</td>
</tr>
<tr>
<td>Aquatic</td>
<td>385 (9)</td>
<td>397 (35)</td>
<td>593 (7)</td>
<td>1.49</td>
</tr>
<tr>
<td>Migratory</td>
<td>410 (12)</td>
<td>219 (22)</td>
<td>17 (35)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

RESULTS

Of the 1154 species assessed, we recorded 616 that form mixed flocks, 55 facilitative behavior, 267 monospecific flocks, and 351 that forage solitarily or in pairs (Table 1, Supplementary Material online). The data belong to 116 families from the orders: Anseriformes, Galliformes, Suliformes, Pelecaniformes, Accipitriformes, Charadriiformes, Columbiformes, Cuculiformes, Apodiformes, Coraciiformes, Trogoniformes, Bucerotiformes, Coraciiformes, Galbuliformes, Piciformes, Psittaciformes, and Passeriformes. The families with more species were Tyrannidae with 110 (77 species forming mixed flocks), Furnariidae with 86 species (54 forming mixed flocks), Parulidae with 55 (all forming mixed flocks), and Thraupidae with 40 species (36 forming mixed flocks).

More than half of all Neotropical species examined participate in mixed-species flocks (55%, 403 species). A smaller number formed monospecific groups (23%, 168 species) or forage solitarily (26%, 193 species). For Palearctic birds, 42% (52 species) conform mixed flocks, 27% (33) conform monospecific flocks, and 31% are solitary birds (28). For the Nearctic region, 70% (82 species) conform mixed flock, 32% (38) monospecific flocks, and 14% (17) forage solitarily. For Asia, Africa, and Australia, we analyzed 305 species, of which 50% (151 species) conform mixed flocks and 19% (58) monospecific flocks while 31% (95) are solitary.

Birds that form mixed flocks were significantly smaller than birds that forage in monospecific flocks (Figure 1, Table 1). In addition, the ratio between the average mass of species that form mixed and monospecific flocks by families shows, except for Palearctic and Aquatic species in which mixed flock are formed by individuals of smaller size (Table 1).

The best predictors for flocking behavior were average mass and habitat (Table 2), thus we found no significant effect of region, migratory, or aquatic habits. Smaller species participated mostly in mixed flocks (Table 3). Regarding species habitat, forest and sea species tend to participate more often in mixed flocks, while grassland and wetland species tend to exhibit mostly monospecific flocks or solitary behavior (Table 3). Phylogenetic effects were significant (p < 0.001), since removing the random effects decreased the model’s log-likelihood. Taxonomic family nested in order exhibited a variance of 3.37, while taxonomic order exhibited a variance of 1.32.

DISCUSSION

We found that species forming mixed flocks were smaller than those forming monospecific flocks or that forage alone, suggesting the existence of benefits for individuals of smaller size species to engage in mixed flocks.

Although our analyses were not designed to explore the possible cause of this relationship, we explore some possible explanations. The literature on bird aggregations is very abundant, but is focussed mainly on the description and analyses of insectivorous mixed-species flocks, formed mostly by Passeriformes (Powell 1984, Terborgh 1990, Jullien & Colbert 2000, Coelho & Marini 2004); without focusing on the physical variables of the species involved. Some previous studies hinted on the similarity in size of the members of flocks, like species of tanagers in Neotropical mixed flocks that are small and similar in size (Hutto 1994). The same phenomenon has been observed in mixed flocks of Sanderlings (Calidris alba) (Silliman et al. 1977, Stawarczyk 1984) and gulls (Barnard et al. 1982, Chilton & Sealy 1987). However, there are exceptions to the trend of similar sized species forming mixed flocks: some reports show birds of different sizes flocking together. For example, in Neotropical mixed flocks the presence of larger birds, such as trogons or Squir-
Piaya cayana, Vireo olivaceus, Walters, can provide benefits by sharing information increasing the detectability of food (Develey & Peres 2000).

Predation risk has been an important factor that affects the size of individuals, but the relationship is unclear and experimental evidence is contradictory. Some research indicates that heavier individuals have higher predation risk due to reduced flight performance and maneuverability (i.e., Starlings Sturnus vulgaris, Witter et al. 1994; Zebra Finches Taeniopygia guttata, Metcalfe & Ure 1995; Blackcaps Sylvia atricapilla, Kullberg et al. 1996, and Brown-headed Cowbirds Molothrus ater, Walters et al. 2017). In contrast with this, Sridhar et al. (2009) and Thiollay & Jullien (1998), among others, argue that a small size increases vulnerability to predation in insectivorous mixed flocks. Both observations indicate that size is related to predation risks, which supports our findings that lower mass is associated with mixed-flock species.

Our results also indicate that an additional predictor of mixed-flock membership is habitat, suggesting a trend for seabirds and forest species to form mixed flocks at a higher rate. The evidence of the influence of habitat on the formation of flocks is abundant. For example, in gulls and lapwings it has been suggested that flock size increased foraging efficiency in mixed flocks (Barnard et al. 1982), as it occurs in many terrestrial species. In addition, the “information centers” in seabirds suggest that the main advantage of flock formation is that individuals can follow others to rich food source (Götmark et al. 1986). Ducks inhabit marshes that are unstable and have ephemeral resources. Here, individuals that feed in flocks have higher rates of food intake than solitary birds (Hepp 1989, Fox et al. 1994). Thiollay (1999) found in terrestrial birds that when the habitat is more open, the tendency to form mixed flocks will increase. The same applies to aquatic species, where open habitat allow a predator to locate potential prey. Marbled Murrelets Brachyramphus marmoratus are almost always found in pairs or monospecific flocks when foraging in exposed waters, while in protected waters, they are frequently forming mixed flocks (Hunt et al. 1985). Studies in tropical forests show that in areas more vulnerable to predators the propensity to group in flocks is higher (Thiollay & Jullien 1998), while in areas with low predation, like islands, it is lower (Beauchamp 2004). However, our results also indicate that in grasslands and wetlands, generally open areas, species tend to behave solitarily and form monospecific flocks. Belonging to certain foraging guilds may also affect this pattern, since grasslands are often used by granivorous birds (Whittingham & Evans 2004) while in forests, mixed flocks are predominantly formed by insectivorous species.

No effect was found between the region of occurrence and flocking behavior. Even though several studies on birds show that temperate climates favor larger body size as a way to optimize body heat (Meiri & Dayan 2003), here we show that flocking behavior is affected by species mass, regardless of region. Concerning migratory species, we observed no differences between migratory status and the trend to form mixed flocks. This might be related to the heterogeneity of guilds and families evaluated, which included disparate species, such as osprey, herons, plovers, flycatchers, and parulid warblers.

Our results indicate that in the complex adaptive landscape of bird-flocking, the species that conform mixed flocks tend to be smaller than species foraging solitarily or forming monospecific flocks. The most likely adaptive force explaining this result is that small birds are more vulnerable to predation. This adaptive force seems to have the strongest impact among a complex diversity of interactions between the species that conform flocks.

ACKNOWLEDGMENTS

We thank the editor and two anonymous referees for their suggestions, Carlos Bosque, Miguel Lento, Luis Gonzalez Morales, and Adriana Rodríguez-Ferraro for their very helpful comments on the manuscript, and Luis Miguel Montilla for his help in the statistical analyses.

REFERENCES

Beauchamp, G & E Goodale (2011) Plumage mimicry in avian mixed species flocks: more or less than meets the eye? The Auk 128: 487–496.

Hilty, S (1994) Birds of Tropical America. A watcher’s introduction to behavior, breeding, and diversity. Texas Univ. Press, Austin, Texas, USA.

Jaffe, K, A Rios & A Flores (2013) Statistics shows that economic prosperity needs both high scientific productivity and complex technological knowledge, but in different ways. Interchange 38: 150–156.

ADAPTIVE CHARACTERISTICS OF BIRD FLOCKS

Webster, S & L Lefebvre (2001) Problem-solving and neophobia in a passeriform–columbiform assemblage in Barbados. Animal Behav-

