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Background: Measurement is an indispensable 
aspect of conducting both quantitative and 
qualitative research and evaluation. With respect 
to qualitative research, measurement typically 
occurs during the coding process. 
 
Purpose: This paper presents quantitative 
methods for determining the reliability of 
conclusions from qualitative data sources. 
Although some qualitative researchers disagree 
with such applications, a link between the 
qualitative and quantitative fields is successfully 
established through data collection and coding 
procedures. 
 
Setting: Not applicable. 
 
Intervention: Not applicable. 

Research Design: Case study. 
 
Data Collection and Analysis: Narrative data 
were collected from a random sample of 528 
undergraduate students and 28 professors. 
 
Findings: The calculation of the kappa statistic, 
weighted kappa statistic, ANOVA Binary Intraclass 
Correlation, and Kuder-Richardson 20 is 
illustrated through a fictitious example. Formulae 
are presented so that the researcher can calculate 
these estimators without the use of sophisticated 
statistical software. 
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he rejection of using quantitative 
methods for assessing the reliability of 

qualitative findings by some qualitative 
researchers is both frustrating and 
perplexing from the vantage point of 
quantitative and mixed method 
researchers. While the need to distinguish 
one methodological approach from 
another is understandable, the reasoning 
sometimes used to justify the wholesale 
rejection of all concepts associated with 
quantitative analysis are replete with 
mischaracterizations, overreaching 
arguments, and inadequate substitutions. 
 One of the first lines of attack against 
the use of quantitative analysis centers on 
philosophical arguments. Healy and Perry 
(2000), for example, characterize 
qualitative methods as flexible, inductive, 
and multifaceted, whereas quantitative 
methods are often characterized as 
inflexible and fixed. Moreover, most 
qualitative researchers view quantitative 
methods as characteristic of a positivist 
paradigm (e.g., Stenbacka, 2001; Davis, 
2008; Paley, 2008)—a term that has come 
to take on a derogatory connotation. Paley 
(2008) states that “doing quantitative 
research entails commitment to a 
particular ontology and, specifically, to a 
belief in a single, objective reality that can 
be described by universal laws” (p. 649). 
 However, quantitative analysis should 
not be synonymous with the positivist 
paradigm because statistical inference is 
concerned with probabilistic, as opposed 
to deterministic, conclusions. Nor do 
statisticians believe in a universal law 
measured free of error. Rather, 
statisticians believe that multiple truths 
may exist and that despite the best efforts 
of the researcher these truths are 
measured with some degree of error. If 
that were not the case, statisticians would 
ignore interaction effects, assume that 
measurement errors do not exist, and fail 

to consider whether differences may exist 
between groups. Yet, most statisticians 
consider all these factors before 
formulating their conclusions. While 
statisticians may be faulted for paying too 
much attention to measures of central 
tendency (e.g., mean, median) at the 
expense of interesting outliers, this is not 
the same as believing in one all-inclusive 
truth. 
 The distinction between objective 
research and subjective research also 
appears to emerge from this paradigm 
debate. Statisticians are portrayed as 
detached and neutral investigators while 
qualitative researchers are portrayed as 
embracing personal viewpoints and even 
biases to describe and interpret the 
subjective experience of the phenomena 
they study (Miller, 2008). While parts of 
these characterizations do, indeed, 
differentiate between the two groups of 
researchers, they fail to explain why a 
majority of qualitative researchers dismiss 
the use of statistical methods. After all, 
the formulas used to conduct such 
analyses do not know or care whether the 
data were gathered using an objective 
rather than a subjective method. 
Moreover, certain statistical methods lend 
themselves to, and were even specifically 
developed for, the analysis of qualitative 
data (e.g., reliability analysis). Other 
qualitative researchers have come to 
equate positivism, and by extension 
quantitative analysis, with causal 
explanations (Healy & Perry, 2000). To 
date, the gold standard for substantiating 
causal claims is through the use of a well-
conducted experimental design. However, 
the implementation of an experimental 
design does not necessitate the use of 
quantitative analysis. Furthermore, 
quantitative analysis may be conducted 
for any type of research design, including 

T
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qualitative research, as is the central 
premise of this paper. 
 For some qualitative researchers (e.g., 
Miller, 2008; Stenbacka, 2001), the 
wholesale rejection of all concepts 
perceived to be quantitative has extended 
to general research concepts like 
reliability and validity. According to 
Stenbacka (2001), “reliability has no 
relevance in qualitative research, where it 
is impossible to differentiate between 
researcher and method” (p. 552). From 
the perspective of quantitative research, 
this statement is inaccurate because 
several quantitative methods have been 
developed for differentiating between the 
researcher, data collection method, and 
informant (e.g., generalizability theory), 
provided, of course, data are available for 
two or more researchers and/or methods. 
 Stenbacka (2001) also objected to 
traditional forms of validity because “the 
purpose in qualitative research never is to 
measure anything. A qualitative method 
seeks for a certain quality that is typical 
for a phenomenon or that makes the 
phenomenon different from others” (p. 
551). It would seem to the present 
authors, however, that this notion is 
inconsistent with traditional qualitative 
research. Measurement is a indispensable 
aspect of conducting research, regardless 
if it is quantitative or qualitative. 
 With respect to qualitative research, 
measurement occurs during the coding 
process. Illustrating the integral nature of 
coding in qualitative research, Benaquisto 
(2008) noted: 
 

The coding process refers to the steps the 
researcher takes to identify, arrange, and 
systematize the ideas, concepts, and 
categories uncovered in the data. Coding 
consists of identifying potentially 
interesting events, features, phrases, 
behaviors, or stages of a process and 
distinguishing them with labels. These are 

then further differentiated or integrated so 
that they may be reworked into a smaller 
number of categories, relationships, and 
patterns so as to tell a story or 
communicate conclusions drawn from the 
data. (p. 85) 

  
 Clearly, in absence of utilizing a coding 
process, researchers would be forced to 
provide readers with all of the data, 
which, in turn, would place the burden of 
interpretation on the reader. However, 
while the importance of coding to 
qualitative research is self-evident to all 
those who have conducted such research, 
the role of measurement may not be as 
obvious. In part, this may be attributed to 
a misunderstanding on the part of many 
researchers as to what is measurement. 
 Measurement is the process of 
assigning numbers, symbols, or codes to 
phenomena (e.g., events, features, 
phrases, behaviors) based on a set of 
prescribed rules (i.e., a coding rubric). 
There is nothing inherently quantitative 
about this process or, at least, there does 
not need to be. Moreover, it does not limit 
qualitative research in any way. In fact, 
many times, measurement may only be 
performed in a qualitative context. 
 For example, suppose that a 
researcher conducts an interview with an 
informant who states that “the bathrooms 
in the school are very dirty.” Now further 
suppose that the researcher developed a 
coding rubric, which, for the sake of 
simplicity, only contained two levels: 
cleanliness and academic performance. 
Clearly, the informant’s statement 
addressed the first level (cleanliness) and 
not the second. Whether the researcher 
chooses to assign this statement a 
checkmark for the cleanliness category or 
a 1, and an ‘X’ or 0 (zero) for the academic 
performance category, does not make a 
difference. The researcher clearly used his 
or her judgment to transform the raw 
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statement made by the informant into a 
code. However, when the researcher 
decided that the statement best 
represented cleanliness and not academic 
performance, he or she also performed a 
measurement process. Therefore, if one 
accepts this line of reasoning, qualitative 
research depends upon measurement to 
render judgments. Furthermore, three 
questions may be asked. First, does 
statement X fit the definition of code Y? 
Second, how many of the statements 
collected fit the definition of code Y? And 
third, how reliable is the definition of code 
Y for differentiating between statements 
within and across researchers (i.e., 
intrarater and interrater reliability, 
respectively)? 
 Fortunately, not every qualitative 
researcher has accepted Stenbacka’s 
notion, in part, because qualitative 
researchers, like quantitative researchers, 
compete for funding and therefore, must 
persuade funders of the accuracy of their 
methods and results (Cheek, 2008). 
Consequently, the concepts of reliability 
and validity permeate qualitative 
research. However, owing to the desire to 
differentiate itself from quantitative 
research, qualitative researchers have 
espoused the use of “interpretivist 
alternatives” terms (Seale, 1999). Some of 
the most popular terms substituted for 
reliability include confirmability, 
credibility, dependability, and replicability 
(Coryn, 2007; Golafshani, 2003; Healy & 
Perry, 2000; Morse, Barrett, Mayan, 
Olson, & Spiers, 2002; Miller, 2008; 
Lincoln & Guba, 1985). 
 In the qualitative tradition, 
confirmability is concerned with 
confirming the researcher’s 
interpretations and conclusions are 
grounded in actual data that can be 
verified (Jensen, 2008; Given & Saumure, 
2008). Researchers may address this 

reliability indicator through the use of 
multiple coders, transparency, audit trails, 
and member checks. Credibility, on the 
other hand, is concerned with the 
research methodology and data sources 
used to establish a high degree of 
harmony between the raw data and the 
researcher’s interpretations and 
conclusions. Various means can be used 
to enhance credibility, including 
accurately and richly describing data, 
citing negative cases, using multiple 
researchers to review and critique the 
analysis and findings, and conducting 
member checks (Given & Saumure, 2008; 
Jensen, 2008; Saumure & Given, 2008). 
Dependability recognizes that the most 
appropriate research design cannot be 
completely predicted a priori. 
Consequently, researchers may need to 
alter their research design to meet the 
realities of the research context in which 
they conduct the study, as compared to 
the context they predicted to exist a priori 
(Jensen, 2008). Dependability can be 
addressed by providing a rich description 
of the research procedures and 
instruments used so that other 
researchers may be able to collect data in 
similar ways. The idea being that if a 
different set of researchers use similar 
methods then they should reach similar 
conclusions (Given & Saumure, 2008). 
Finally, replicability is concerned with 
repeating a study on participants from a 
similar background as the original study. 
Researchers may address this reliability 
indicator by conducting the new study on 
participants with similar demographic 
variables, asking similar questions, and 
coding data in a similar fashion to the 
original study (Firmin, 2008). 
 Like qualitative researchers, 
quantitative researchers have developed 
numerous definitions of reliability, 
including interrater and intrarater 
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reliability, test-retest reliability, internal 
consistency, and interclass correlations to 
name a few (Crocker & Algina, 1986; 
Hopkins, 1998). A review of the 
qualitative alternative terms revealed 
them to be indirectly associated with 
quantitative notions of reliability. 
However, although replicability is 
conceptually equivalent to test-retest 
reliability, the other three terms appear to 
describe research processes tangentially 
related to reliability. Moreover, they have 
two major liabilities. First, they place the 
burden of assessing reliability squarely on 
the reader. For example, if a reader 
wanted to determine the confirmability of 
a finding they would need to review the 
audit trail and make an independent 
assessment. Similar reviews of the data 
would be necessary, if a reviewer wanted 
to assess the credibility of a finding or 
dependability of a study design. 
 Second, they fail to consider interrater 
reliability, which, in our experience, 
accounts for a considerable amount, if not 
a majority, of the variability in findings in 
qualitative studies. Interrater reliability is 
concerned with the degree to which 
different raters or coders appraise the 
same information (e.g., events, features, 
phrases, behaviors) in the same way (van 
den Hoonaard, 2008). In other words, do 
different raters interpret qualitative data 
in similar ways? The process of 
conducting an interrater reliability 
analysis, which is detailed in the next 
section, is relatively straightforward. 
Essentially, the only additional step 
beyond development and finalization of a 
coding rubric is that, at least two or more 
raters must independently rate all of the 
qualitative data using the coding rubric. 
Although collaboration, in the form of 
consensus agreement, may be used to 
finalize ratings after each rater has had an 
opportunity to rate all data, each rater 

must work independently of the other to 
reduce bias in the first phase of analysis. 
Often, this task is greatly facilitated by use 
of a database system that, for example, (1) 
displays the smallest codable unit of a 
transcript (e.g., a single sentence), (2) 
presents the available coding options, and 
(3) records the rater’s code before 
displaying the next codable unit. 
 While it is likely that qualitative 
researchers who prescribe to a 
constructionist paradigm may object to 
the constraint of forcing qualitative 
researchers to use the same coding rubric 
for a study, rather than developing their 
own, this is an indispensable process for 
attaining a reasonable level of interrater 
reliability. An example of the perils of not 
attending to this issue may be found in an 
empirical study conducted by Armstrong, 
Gosling, Weinman, and Marteau (1997). 
Armstrong and his colleagues invited six 
experienced qualitative researchers from 
Britain and the United States to analyse a 
transcript (approximately 13,500 words 
long) from a focus group comprised of 
adults living with cystic fibrosis that was 
convened to discuss the topic of genetic 
screening. In return for a fee, each 
researcher was asked to prepare an 
independent report in which they 
identified and described the main themes 
that emerged from the focus group 
discussion, up to a maximum of five. 
Beyond these instructions, each 
researcher was permitted to use any 
method for extracting the main themes 
they felt was appropriate. Once the 
reports were submitted, they were 
thematically analyzed by one of the 
authors, who deliberately abstained from 
reading the original transcript to reduce 
external bias. 
 The results uncovered by Armstrong 
and his colleagues paint a troubling 
picture. On the surface, it was clear that a 
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reasonable level of consensus in the 
identification of themes was achieved. 
Five of the six researchers identified five 
themes, while one identified four themes. 
Consequently, only four themes are 
discussed in the article: visibility; 
ignorance; health service provision; and 
genetic screening. With respect to the 
presence of each theme, there was 
unanimous agreement for the visibility 
and genetic screening themes, while the 
agreement rates were slightly lower for 
the ignorance and health service provision 
themes (83% and 67%, respectively). 
Overall, these are good rates of 
agreement. However, a deeper 
examination of the findings revealed two 
troubling issues. First, a significant 
amount of disagreement existed with 
respect to how the themes were organized. 
Some researchers classified a theme as a 
basic structure whereas others organized 
it under a larger basic structure (i.e., gave 
it less importance than the overarching 
theme they assigned it to). Second, a 
significant amount of disagreement 
existed with respect to the manner in 
which themes were interpreted. For 
example, some of the researchers felt that 
the ignorance theme suggested a need for 
further education, other researchers 
raised concern about the eugenic threat, 
and the remainder thought it provided 
parents with choice. Similar 
inconsistencies with regard to 
interpretability occurred for the genetic 
screening theme where three researchers 
indicated that genetic screening provided 
parents with choice while one linked it 
with the eugenic threat. 
 These results serve as an example of 
how “reality” is relative to the researcher 
doing the interpretation. However, they 
also demonstrate how the quality of a 
research finding requires knowledge of 
the degree to which consensus is reached 

by knowledgeable researchers. Clearly, by 
this statement, we are assuming that 
reliability of findings across different 
researchers is a desirable quality. There 
certainly may be instances in which 
reliability is not important because one is 
only interested in the findings of a specific 
researcher, and the perspectives of others 
are not desired. That being the case, one 
may consider examining intrarater 
reliability. In all other instances, however, 
it is reasonable to assume that it is 
desirable to differentiate between the 
perspectives of the informants and those 
of the researcher. In other words, are the 
researcher’s findings truly grounded in 
the data or do they reflect his or her 
personal ideological perspectives. For a 
politician, for example, knowing the 
answer to this question may mean the 
difference between passing and rejecting a 
policy that allows parents to genetically 
test embryos. 
 Although qualitative researchers can 
address interrater reliability by following 
the method used by Armstrong and his 
colleagues, the likelihood of achieving a 
reasonable level of reliability will be low 
simply due to researcher differences (e.g., 
the labels used to describe themes, 
structural organization of themes, 
importance accorded to themes, 
interpretation of data). In general, given 
the importance of reducing the variability 
in research findings attributed solely to 
researcher variability, it would greatly 
benefit qualitative researchers to utilize a 
common coding rubric. Furthermore, use 
of a common coding rubric does not 
greatly interfere with normal qualitative 
procedures, particularly if consensus is 
reached beforehand by all the researchers 
on the rubric that will be used to code all 
the data. Of equal importance, this 
procedure permits the researcher to 
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remain to be the instrument by which 
data are interpreted (Brodsky, 2008). 
 Reporting the results of, to this point, 
this qualitative process should 
considerably improve the credibility of 
research findings. However, three issues 
still remain. First, reporting the findings 
of multiple researchers places the burden 
of synthesis on the reader. Therefore, 
researchers should implement a method 
to synthesize all the findings through a 
consensus-building procedure or 
averaging results, where appropriate and 
possible. Second, judging the reliability of 
a study requires that deidentified data are 
made available to anyone who requests it. 
While no one, to the best of our 
knowledge, has studied the degree to 
which this is practiced, our experience 
suggests it is not prevalent in the research 
community. Third, reporting the findings 
of multiple researchers will only permit 
readers to get an approximate sense of the 
level of interrater reliability or whether it 
meets an acceptable standard. Moreover, 
comparisons between the reliability of the 
study to another qualitative study are 
impractical for complex studies. 
 Fortunately, simple quantitative 
solutions exist that enable researchers to 
report the reliability of their conclusions 
rather than shift the burden to the reader. 
The present paper will expound upon four 
quantitative methods for calculating 
interrater reliability that can be 
specifically applied to qualitative data and 
thus, should not be regarded as products 
of a positivist position. In fact, reliability 
estimates, which can roughly be 
conceptualized as the degree to which 
variability of research findings are or are 
not due to differences in researchers, 
illustrate the degree to which reality is 
socially constructed or not. Data that are 
subject to a wide range of interpretations 
will likely produce low reliability 

estimates, whereas data whose 
interpretations are consistent will likely 
produce high reliability estimates. Finally, 
calculating interrater reliability in 
addition to reporting a narrative of the 
discrepancies and consistencies between 
researchers can be thought of as a form of 
methodological triangulation. 
 

Method 
 
Data Collection Process 
 
Narrative data were collected from 528 
undergraduate students and 28 professors 
randomly selected from a university 
population. Data were collected with the 
help of an open-ended survey that asked 
respondents to identify the primary 
challenges facing the university that 
should be immediately addressed by the 
university’s administration. Data were 
transcribed from the surveys to an 
electronic database (Microsoft Access) 
programmed to resemble the original 
questionnaire. Validation checks were 
performed by upper-level graduate 
students to assess the quality of the data 
entry process. Corrections to the data 
entered into the database were made by 
the graduate students in the few instances 
in which discrepancies were found 
between the responses noted on the 
survey and those entered in the database. 
Due to the design of the original 
questionnaire, which encouraged 
respondents to bullet their responses, 
little additional work was necessary to 
further break responses into the smallest 
codable units (typically 1-3 sentences). 
That said, it was possible for the smallest 
codable units to contain multiple themes 
although the average number of themes 
was less than two per unit of analysis. 
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Coding Procedures 
 
Coding qualitative data is an arduous task 
that requires iterative passes through the 
raw data in order to generate a reliable 
and comprehensive coding rubric. This 
task was conducted by two experienced 
qualitative researchers who independently 
read the original narratives and identified 
primary and secondary themes, 
categorized these themes based on their 
perception of the internal structure 
(selective coding; Benaquisto, 2008), and 
produced labels for each category and 
subcategory based on the underlying data 
(open coding; Benaquisto, 2008). 
Following this initial step, the two 
researchers further differentiated or 
integrated their individual coding rubric 
(axial coding; Benaquisto, 2008) into a 
unified coding rubric. Using the unified 
coding rubric, the two researchers 
attempted an initial coding of the raw data 
to determine (1) the ease with which the 
coding rubric could be applied, (2) 
problem areas that needed further 
clarification, (3) the trivial categories that 
could be eliminated or integrated with 
other categories, (4) the extensive 
categories that could be further refined to 
make important distinctions, and (5) the 
overall coverage of the coding rubric. Not 
surprisingly, several iterations were 
necessary before the coding rubric was 
finalized. In the following section, for ease 
of illustration, reliability estimates are 
presented only for a single category. 
 
Statistical Procedures 
 
Very often, coding schemes follow a 
binomial distribution. That is, coders 
indicate whether a particular theme either 
is or is not present in the data. When two 
or more individuals code data to identify 

such themes and patterns, the reliability 
of coder’s efforts can be determined, 
typically by coefficients of agreement. 
This type of estimate can be used as a 
measure that objectively permits a 
researcher to substantiate that his or her 
coding scheme is replicable. 
 Most estimators for gauging the 
reliability of continuous agreement data 
predominately evolved from psychometric 
theory (Cohen, 1968; Lord & Novick, 
1968; Gulliksen, 1950; Rozeboom, 1966). 
Similar methods for binomial agreement 
data shortly followed (Cohen, 1960; Lord 
& Novick, 1968). Newer forms of these 
estimators, called binomial intraclass 
correlation coefficients (ICC), were later 
developed to handle more explicit 
patterns in agreement data (Fleiss & 
Cuzick, 1979; Kleinman, 1973; Lipsitz, 
Laird, & Brennan, 1994; Mak, 1988; 
Nelder & Pregibon, 1987; Smith, 1983; 
Tamura & Young, 1987; Yamamoto & 
Yanagimoto, 1992).  
 In this paper four methods that can be 
utilized to assess the reliability of 
binomial coded agreement data are 
presented. These estimators are the kappa 
statistic (κ), the weighted kappa statistic 
(κW), the ANOVA binary ICC, and the 
Kuder-Richardson 20 (KR-20). The kappa 
statistic was one of the first statistics 
developed for assessing the reliability of 
binomial data between two or more 
coders (Cohen, 1960; Fleiss, 1971). A 
modified version of this statistic 
introduced the use of numerical weights. 
This statistic allows the user to apply 
different probability weights to cells in a 
contingency table (Fleiss, Cohen, & 
Everitt, 1969) in order to apply different 
levels of importance to various coding 
frequencies. The ANOVA binary ICC is 
based on the mean squares from an 
analysis of variance (ANOVA) model 
modified for binomial data (Elston, Hill, & 
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Smith, 1977). The last estimator was 
developed by Kuder and Richardon 
(1937), and is commonly known as KR-20 
or KR (20), because it was the 20th 
numbered formula in their seminal 
article. This estimator is based on the 
ratios of agreement to the total discrete 
variance. 
 These four reliability statistics are 
functions of i x j contingency tables, also 
known as cross-tabulation tables. The 
current paper will illustrate the use of 
these estimators for a study dataset that 
comprises the binomial coding patterns of 
two investigators. Because these coding 
patterns are from two coders and the 
coded responses are binomial (i.e., theme 
either is or is not present in a given 
interview response, the contingency table 
has two rows (i = 2) and two columns (j = 
2).  
 The layout of this table is provided in 
Table 1. The first cell, denoted (i1 = 
Present, j1 = Present), of this table consists 
of the total frequency of cases where 
Coder 1 and Coder 2 both agree that a 
theme is present in the participant 
interview responses. The second cell, 
denoted (i1 = Present, j2 = Not Present), of 
this table consists of the total frequency of 
cases where Coder 1 feels that a theme is 
present in the interview responses, and 
the second coder does not agree with this 
assessment. The third cell, denoted (i2 = 
Not Present, j1 = Present), of this table 
consists of the total frequency of cases 
where Coder 2 feels that a theme is 
present, and the first coder does not agree 
with this assessment. The fourth cell, 
denoted (i2 = Not Present, j1 = Not 
Present), of this table consists of the total 
frequency of cases where both Coder 1 and 
Coder 2 agree that a theme is not present 
in the interview responses (Soeken & 
Prescott, 1986).  
 

Table 1 
General Layout of Binomial Coder 

Agreement Patterns for Qualitative Data 
 

 

Coder 1 

Theme 
Present (j1) 

Theme Not 
Present 

(j2) 

Coder 2 

Theme 
Present (i1) 

Cell11 Cell21 

Theme Not 
Present 

(i2) 
Cell12 Cell22 

 
Participants 
 
Interview data were collected for and 
transcribed from 28 professors and 528 
undergraduate students randomly 
selected from a university population. The 
binomial coding agreement patterns for 
these two groups of interview participants 
are provided in Table 2 and Table 3. 
 For the group of professor and student 
interview participants, the coders agreed 
that one professor and 500 students 
provided a response that pertains to 
overall satisfaction of university facilities.  
 Coder 1 felt that an additional seven 
professors and two students made a 
response pertinent to overall satisfaction, 
whereas Coder 2 did not feel that response 
from these two professors pertained to the 
interview response of interest. Coder 2 felt 
that one professor and one student made 
a response pertinent to overall 
satisfaction, whereas Coder 1 did not feel 
that response from this professor 
pertained to the interview response of 
interest. Coder 1 and Coder 2 agreed that 
responses from the final 19 professors and 
25 students did not pertain to the topic of 
interest. 
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Table 2 
Binomial Coder Agreement Patterns for 

Professor Interview Participants 
 

 

Coder 1 

Theme 
Present 

(j1) 

Theme Not 
Present (j2) 

Coder 2 

Theme 
Present (i1) 

1 1 

Theme Not 
Present (i2) 7 19 

 
Table 3 

Binomial Coder Agreement Patterns for 
Student Interview Participants 

 

 

Coder 1 

Theme 
Present 

(j1) 

Theme Not 
Present (j2) 

Coder 2 

Theme 
Present (i1) 500 1 

Theme Not 
Present (i2) 

2 25 

 
 
 
 
 
 
 
 

Four Estimators for Calculating 
the Reliability of Qualitative 
Data 
 
Kappa 
 
According to Brennan and Hays (1992), 
the κ statistic “determines the extent of 
agreement between two or more judges 
exceeding that which would be expected 
purely by chance” (p. xx). This statistic is 
based on the observed and expected level 
of agreement between two or more raters 
with two or more levels. The observed 
level of agreement (po) equals the 
frequency of records where both coders 
agree that a theme is present plus the 
frequency of records where both coders 
agree that a theme is not present divided 
by the total number of ratings. The 
expected level of agreement (pe) equals 
the summation of the cross product of the 
marginal probabilities. In other words, 
this is the expected rate of agreement by 
random chance alone. The kappa statistic 
(κ) then equals (po-pe)/(1-pe). The 
traditional formulae for po and pe are 

∑∑
= =

=
c

i

c

j
ijo pp

1 1 and 
∑∑
= =

=
c

i

c

j
jie ppp

1 1
..

, 
where c denotes the total number of cells, 
i denotes the ith row, and j denotes the jth 
column (Fleiss, 1971; Soeken & Prescott, 
1986). These formulae are illustrated in 
Table 4. 
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Table 4 
2 x 2 Contingency Table for the Kappa Statistic 

 

 

Coder 1 Marginal Row 
Probabilities 

Theme present 
Theme not 

present pi. 

Coder 2 

Theme present c11 c21 p1. = (c11 + c21) / N 

Theme not 
present c12 c22 p2. = (c12 + c22) / N 

Marginal 
Column 
Probabilities 

p.j 
p.1 = (c11 + c12) / 

N 
p.2 = (c21 + c22) / 

N 
N = (c11 + c21 + c12 

+ c22) 

 

N
ccpp

c

i

c

j
ijo

2211

1 1

+
== ∑∑

= =  and 

2..21..1
1 1

.. ppppppp
c

i

c

j
jie +==∑∑

= =  
 Estimates from professor interview 
participants for calculating the kappa 
statistic are provided in Table 5. The 

observed level of agreement for professors 
is (1+19)/556 = 0.0360. The expected 
level of agreement for professors is 
0.0036(0.0144) + 0.0468(0.0360) = 
0.0017. 
 

 
Table 5 

Estimates from Professor Interview Participants for Calculating the Kappa Statistic 
 

 

Coder 1 
Marginal Row 
Probabilities 

Theme present 
Theme not 

present pi. 

Coder 2 

Theme present 1 1 
p1. = 2/556 = 

0.0036 

Theme not 
present 7 19 

p2. = 26/556 = 
0.0468 

Marginal 
Column 
Probabilities 

p.j 
p.1 = 8/556 = 

0.0144 
p.2 = 20/556 = 

0.0360 
N = 28 + 528 = 

556 

 
 Estimates from student interview 
participants for calculating the kappa 
statistic are provided in Table 6. The 
observed level of agreement for students 
is (500+25)/556 = 0.9442. The expected 

level of agreement for students is 
0.9011(0.9029) + 0.0486(0.0486) = 
0.8160. 
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Table 6 
Estimates from Student Interview Participants for Calculating the Kappa Statistic 

 

 

Coder 1 
Marginal Row 
Probabilities 

Theme present 
Theme not 

present pi. 

Coder 2 

Theme present 500 1 
p1. = 501/556 = 

0.9011 

Theme not 
present 2 25 

p2. = 27/556 = 
0.0486 

Marginal 
Column 
Probabilities 

p.j 
p.1 = 502/556 = 

0.9029 
p.2 = 26/556 = 

0.0468 
N = 556 

 
 The total observed level of agreement 
for the professor and student interview 
groups is po = 0.0360 + 0.9442 = 0.9802. 
The total expected level of agreement for 
the professor and student interview 
groups is pe = 0.0017 + 0.8160 = 0.8177. 
For the professor and student and 
professor groups, the kappa statistic 
equals κ = (0.9802 – 0.8177)/(1 – 0.8177) 
= 0.891. The level of agreement between 
the two coders is 0.891 beyond that which 
is expected purely by chance. 
 
Weighted Kappa 
 
The reliability coefficient, κW, has the 
same interpretation as the kappa statistic, 
κ, but the researcher can differentially 
weight each cell to reflect varying levels of 
importance. According to Cohen (1968), 
κW is “the proportion of weighted 
agreement corrected for chance, to be 
used when different kinds of 
disagreement are to be differentially 
weighted in the agreement index” (p. xx). 
As an example, the frequencies of coding 
patterns where both raters agree that a 
theme is present can be given a larger 
weight than patterns where both raters 

agree that a theme is not present. The 
same logic can be applied where the 
coders disagree on the presence of a 
theme in participant responses. 
 The weighted observed level of 
agreement (pow) equals the frequency of 
records where both coders agree that a 
theme is present times a weight plus the 
frequency of records where both coders 
agree that a theme is not present times 
another weight divided by the total 
number of ratings. The weighted expected 
level of agreement (pew) equals the 
summation of the cross product of the 
marginal probabilities, where each cell in 
the contingency table has its own weight. 
The weighted kappa statistic κW then 
equals (pow-pew)/(1-pew). The traditional 
formulae for pow and pew are  

∑∑
= =

=
c

i

c

j
ijijow pwp

1 1

and ∑∑
= =

=
c

i

c

j
jiijew ppwp

1 1
.. , 

where c denotes the total number of cells, 
i denoted the ith row, j denotes the jth 
column, and wij denotes the i, jth cell 
weight (Fleiss, Cohen, & Everitt, 1969; 
Everitt, 1968). These formulae are 
illustrated in Table 7. 
 

 



Jason W. Davey, P. Cristian Gugiu, Chris L. S. Coryn 
 

Journal of MultiDisciplinary Evaluation, Volume 6, Number 13 
ISSN 1556-8180 
February 2010 

152 

Table 7 
2 x 2 Contingency Table for the Weighted Kappa Statistic 

 

 

Coder 1 Marginal Row 
Probabilities 

Theme present 
Theme not 

present pi. 

Coder 2 

Theme present w11c11 w21c21 
p1. = (w11c11 + 

w21c21) / N 

Theme not 
present 

w12c12 w22c22 
p2. = (w12c12 + 

w22c22) / N 

Marginal 
Column 
Probabilities 

p.j 
p.1 = (w11c11 + 

w12c12) / N 
p.2 = (w21c21 + 

w22c22) / N 
N = (c11 + c21 + c12 

+ c22) 

 

N
cwcwpp

c

i

c

j
ijo

22221111

1 1

+
==∑∑

= =  and 

∑∑
= =

=
c

i

c

j
jiije ppwp

1 1
..

. 
 Karlin, Cameron, and Williams (1981) 
provided three methods for weighting 
probabilities as applied to the calculation 
of a kappa statistic. The first method 
equally weights each pair of observations. 

This weight is calculated as
N
nw i

i = , where 

ni is the sample size of each cell and N is 
the sum of the sample sizes from all of 
cells of the contingency table. The second 
method equally weights each group (e.g., 
undergraduate students and professors) 
irrespective of its size. These weights can 

be calculated as ( )1nkn
1w

ii
i −
= , where k is 

the number of groups (e.g., k = 2). The 
last method weights each cell according to 
the sample size in each cell. The formula 

for this weighting option is ( )1nN
1w
i

i −
= .  

 There is no single standard for 
applying probability weights to each cell 
in a contingency table. For this study, the 

probability weights used are provided in 
Table 8. In the first row and first column, 
the probability weight is 0.80. This weight 
was chosen arbitrarily to reflect the 
overall level of importance in the 
agreement of a theme being present as 
identified by both coders. In the second 
row and first column, the probability 
weight is 0.10. In the first row and second 
column, the probability weight is 0.09. 
These two weights were used to reduce the 
impact of differing levels of experience in 
qualitative research between the two 
raters. In the second row and second 
column, the probability weight is 0.01. 
This weight was employed to reduce the 
effect of the lack of existence of a theme 
from the interview data. 
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Table 8 
Probability Weights on Binomial Coder 
Agreement Patterns for Professor and 

Student Interview Participants 
 

 

Coder 1 

Theme 
Present (j1) 

Theme Not 
Present 

(j2) 

Coder 2 

Theme 
Present (i1) 

0.80 0.09 

Theme Not 
Present 

(i2) 
0.10 0.01 

 
 Estimates from professor interview 
participants for calculating the weighted 
kappa statistic are provided in Table 9. 
The observed level of agreement for 
professors is [0.8(1)+0.01(19)]/556 = 
0.0018. The expected level of agreement 
for professors is 0.0016(0.0027) + 
0.0016(0.0005) = 0.00001. 
 
 
 

 
Table 9 

Estimates from Professor Interview Participants for Calculating the Weighted Kappa 
Statistic 

 

 

Coder 1 Marginal Row 
Probabilities 

Theme present 
Theme not 

present 
pi. 

Coder 2 

Theme present 0.8(1) = 0.8 0.09(1) = 0.09 p1. = 0.89/556 = 
0.0016 

Theme not 
present 

0.1(7) = 0.7 0.01(19) =0.19 
p2. = 0.89/556 = 

0.0016 

Marginal 
Column 
Probabilities 

p.j 
p.1 = 1.5/556 = 

0.0027 
p.2 = 0.28/556 = 

0.0005 
N = 28 + 528 = 

556 

 
 Estimates from professor interview 
participants for calculating the weighted 
kappa statistic are provided in Table 10. 
The observed level of agreement for 
professors is [0.8(500)+0.01(25)]/556 = 

0.7199. The expected level of agreement 
for professors is 0.7196(0.7198) + 
0.0008(0.0006) = 0.5180. 
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Table 10 
Estimates from Student Interview Participants for Calculating the Weighted Kappa 

Statistic 
 

 

Coder 1 Marginal Row 
Probabilities 

Theme present 
Theme not 

present pi. 

Coder 2 

Theme present 0.8(500) = 400 0.09(1) = 0.09 
p1. = 400.09/556 = 

0.7196 

Theme not 
present 

0.1(2) = 0.2 0.01(25) =0.25 
p2. = 0.45/556 = 

0.0008 

Marginal 
Column 
Probabilities 

p.j 
p.1 = 400.2/556 

= 0.7198 
p.2 = 0.34/556 = 

0.0006 
N = 28 + 528 = 

556 

 
 The total observed level of agreement 
for the professor and student interview 
groups is pow = 0.0018 + 0.7199 = 0.7217. 
The total expected level of agreement for 
the professor and student interview 
groups is pew = 0.00001 + 0.5180 = 
0.5181. For the professor and student and 
professor groups, the weighted kappa 
statistic equals κW = (0.7217 – 0.5181)/(1 
– 0.5181) = 0.423. The level of agreement 
between the two coders is 0.423 beyond 
that which is expected purely by chance 
after applying importance weights to each 
cell. This reliability statistic is notably 
smaller than the unadjusted kappa 
statistic because of the number of down-
weighted cases where both coders agreed 
that the theme is not present in the 
interview responses.   
 
ANOVA Binary ICC 
 
From the writings of Shrout and Fleiss 
(1979), the currently available ANOVA 
Binary ICC that is appropriate for the 
current data set is based on what they 
refer to as ICC(3,1). More specifically, this 
version of the ICC is based on within 
mean squares and between mean squares 

for two or more coding groups/categories 
from an analysis of variance model 
modified for binary response variables by 
Elston (1977). This reliability statistic 
measures the consistency of the two 
ratings (Shrout and Fleiss, 1979), and is 
appropriate when two or more raters rate 
the same interview participants for some 
item of interest. ICC(3,1) assumes that the 
raters are fixed; that is, the same raters 
are utilized to code multiple sets of data. 
The statistic ICC(2,1) that assumes the 
coders are randomly selected from a 
larger population of raters (Shrout and 
Fleiss, 1979) is recommended for use but 
not currently available for binomial 
response data.  
 The traditional formulae for these 
mean squares within and between along 
with an adjusted sample size estimate are 
provided in Table 11. In these formulae, k 
denotes the total number of groups or 
categories. Yi denotes the frequency of 
agreements (both coders indicate a theme 
is present, or both coders indicate a theme 
is not present) between coders for the ith 
group or category, ni is the total sample 
size for the ith group or category, and N is 
the total sample size across all groups or 
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categories. Using these estimates, the 
reliability estimate equals 

WB

WB
AOV MSnMS

MSMS
)1(

ˆ
0 −+
−

=ρ  (Elston, Hill, & 

Smith, 1977; Ridout, Demétrio, & Firth, 
1999). 
 Estimates from professor and student 
interview participants for calculating the 
ANOVA Binary ICC are provided in Table 
11. Given that k = 2 and N = 556, the 
adjusted sample size equals 54.2857. The 
within and between mean squares equal 

0.0157 and 2.0854, respectively. Using 
these estimates, the ANOVA binary ICC 
equals  

0.0157)15827.54(0854.2
0.01570854.2

)1( 0 −+
−

=
−+

−

WB

WB

MSnMS
MSMS

= 0.714, which denotes the consistency of 
coding between the two coders on the 
professor and student interview 
responses. 
 

 
Table 11 

Formulae and Estimates from Professor and Student Interview Participants for 
Calculating the ANOVA Binary ICC 

 
Description of 
Statistic 

Statistic Formula 

Mean Squares 
Within 

MSW ⎥
⎦

⎤
⎢
⎣

⎡
−

− ∑∑
==

k

i i

i
k

i
i n

YY
kN 1

2

1

1
 [ ]=−

−
= 303.536545

2556
1

 0.0157 

Mean Squares 
Between 

MSB =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−

− ∑ ∑
= =

k

i

k

i
i

i

i Y
Nn

Y
k 1

2

1

2 1
1

1 =⎥
⎦

⎤
⎢
⎣

⎡
−

− 556
545303.536

12
1 2

2.0854 

Adjusted Sample 
Size n0 ⎥

⎦

⎤
⎢
⎣

⎡
−

− ∑
=

k

i
in

N
N

k 1

21
1

1
 )28  (528

556
1-556

1-2
1 22

⎥⎦
⎤

⎢⎣
⎡ += = 54.5827 

 
Note: ΣYi denotes the total number of cases where both coders indicate that a theme either is or is not 
present in a given response. 
 
Kuder-Richardson 20 
 
In their landmark article, Kuder and 
Richardson (1937) presented the 
derivation of the KR-20 statistic, a 
coefficient that they used to determine the 
reliability of test items. This estimator is a 
function of the sample size, summation of 
item variances, and total variance. Two 
observations in these formulae require 
further inquiry. These authors do not 
appear to discuss the distributional 

requirements of the data in relation to the 
calculation of the correlation iir , possibly 

due to its time of development in relation 
to the infancy of mathematical statistics. 
This vagueness has lead to some incorrect 
calculations of the KR-20. Crocker and 
Algina (1986) present examples on the 
calculation of the KR-20 in Table 7.2 
based on data from Table 7.1 (pp. 136-
140). In Table 7.1, the correlation on the 
two split-halves is presented as 34.0ˆ =ABρ . 
It is not indicated that this statistic is the 
Pearson correlation. This is problematic 
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because this statistic assumes that the two 
random variables are continuous, when in 
actuality they are discrete. An appropriate 
statistic is Kendall-τc and this correlation 
equals 0.35. As can be seen, the 
correlation may be notably 
underestimated as well as the KR-20 if the 
incorrect distribution is assumed. For the 
remainder of this paper, the Pearson 
correlation will be substituted with the 
Kendall-τc correlation. 
 Second, Kuder and Richardson (1937) 
present formulae for the calculation of 2

tσ  

and iir that are not mutually exclusive. 

This lack of exclusiveness has caused 
some confusion in appropriate 
calculations of the total variance 2

tσ . Lord 

and Novick (1968) indicated that this 
statistic is equal to coefficient α 
(continuous) under certain circumstances, 
and Crocker and Algina (1986) elaborated 
on this statement by indicating “This 
formula is identical to coefficient alpha 
with the substitution of piqi for 2ˆ iσ ” (p. 

139). This is unfortunately incomplete. 
 Not only must this substitution be 
made for the numerators variances, the 
denominator variances must also be 
adjusted in the same manner. That is, if 
the underlying distribution of the data is 
binomial, all estimators should be based 
on the level of measurement appropriate 
for the distribution. Otherwise, KR-20 
formula will be based on a ratio of a 
discrete variance to a continuous variance. 
The resulting total variance will be 
notably to substantially inflated. For the 
current paper, the KR-20 will be a 
function of a total variance based on the 
discrete level of measurement. This 
variance will equal the summation of the 
main and off diagonals of a variance-
covariance matrix. These calculations are 
further detailed in the next section. 

KR-20 will be computed using the 

formula ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

− ∑
=

k

i i

i

i

i

T n
Y

n
Y

N
N

1
2 111

1 σ
, where 

k denotes the total number of groups or 
categories, Yi denotes the number of 
agreements between coders for the ith 
group or category, ni is the total sample 
size for the ith group or category, and N is 
the total sample size across all groups or 
categories (Lord & Novick, 1968). The 
total variance ( )2

Tσ  for coder agreement 
patterns equals the summation of 
elements in a variance-covariance matrix 
for binomial data (i.e., 

),(2 21
2
2

2
1 XXCOV++σσ  = 

2112
2
2

2
1 2 σσρσσ ++ ) (Stapleton, 1995). The 

variance-covariance matrix takes the 
general form  

Σ = 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

2

2
1221

2112
2

2

1

njiij

jiij
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σσσρ

σσρσσρσ

LL
MOLL
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L

 (Kim 

& Timm, 2007), and reduces to  

Σ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
2
2

2
1

1221

2112
σ

σ
σσρ

σσρ
 for a coding 

scheme comprised of two raters. In this 

matrix, the variances ( )2,2
21 σσ  of 

agreement for the ith group or category 
should be based on discrete expectations 
(Hogg, McKean, & Craig, 2004). The form 
of this variance equals the second moment 
minus the square of the first moment; that 
is, E(X2) – [E(X)]2 (Ross, 1997). For 

continuous data, ( ) ∫
+∞

∞−
∂⋅= xxfx )( XE 22  and 

∫
+∞

∞−
∂⋅= xxfx )( E(X)  where f(x) denotes the 

probability density function (pdf) for 
continuous data. For the normal pdf, for 
example, μ= E(X)  and ( ) 22 )(XE σ=− XE . 
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For discrete data, 

∑ ==
i

ii xXobx )(Pr )E(X 22  and 

∑ ==
i

ii xXobx )(Pr E(X) , where Prob(X = 

xi) denotes the pdf for discrete data (Hogg 
& Craig, 1995). For the binomial pdf, 

pn ⋅= E(X) and ( ) )1()(XE 2 ppnXE −⋅=−  
(Efron & Tibshirani, 1993). If a discrete 
distribution cannot be assumed or is 
unknown, it is most appropriate to use the 
distribution-free expectation 
(Hettmansperger & McKean, 1998). Basic 
algebra is only needed to solve for ( )2XE  
and )(XE . For this last scenario it is 
important to also note that if the 
underlying distribution is discrete, 
methods assuming continuity for 
calculating ( )2XE  and )(XE should not be 
utilized because the standard error can be 
substantially inflated, and reducing the 
accuracy of statistical inference 
(Bartoszynski & Niewiadomska-Bugaj, 
1996). 
 As with the calculation of ( )2XE  and 

)(XE  the distribution of data must also 
be considered in the calculation of 
correlations. Otherwise, standard errors 
will be inflated. For data that take the 
form as either the presence or absence of 
a theme, which clearly have a discrete 
distribution, the correlation should be 
based on distributions suitable for this 

type of data. In this paper, the correlation 
ρ12 for agreement patterns between the 
coders will be Kendall-τc (Bonett and 
Wright, 2000). This correlation can be 
readily estimated using the PROC CORR 
procedure in the statistical software 
package SAS.  
 Estimates for calculating the KR-20 
based on coder agreement patterns for the 
professor and student interview groups 
are provided in Table 12. Letting x2 = 2 for 
non-agreed responses, the variance is 
0.816 and 0.023, respectively, for the 
professor and undergraduate student 
groups. The Kendall-τc correlation equals 
0.881. Using these estimates, the 
covariance between the groups equals 
0.121. The total variance then equals 
10.081. The final component of the KR-20 
formula is the proportion of agreement 
times one minus this proportion (i.e., pi(1-
pi)) for each of the groups. This estimate 
for the professor and undergraduate 
student interview groups equals 0.204 
and 0.006. The sum of these values is 
0.210. The KR-20 reliability estimate thus 

equals  0.210
1.081

1-1
1-556

556
⎥⎦
⎤

⎢⎣
⎡  = 0.807, 

which equals the reliability between 
professor and student interview responses 
on the theme of interest. 
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Table 12 
Estimates from Professor and Student Interview Participants for Calculating the KR 20 

 
Estimate Professor Group Student Group 

Individual Variances 0.816 0.023 

Kendall-τc Correlation 0.881 

Covariance (0.881)(0.816)1/2(0.023)1/2 = 0.121 

Total Variance 0.816 + 0.023 + 2*0.121 = 1.081 

pi(1-pi) 0.714(1-0.714) = 0.204 0.994(1-0.994) = 0.006 

Σpi(1-pi) 0.210 

 

Discussion 
 
This paper presented four quantitative 
methods for gauging interrater reliability 
of qualitative findings following a 
binomial distribution (theme is present, 
theme is absent). The κ statistic is a 
measure of observed agreement beyond 
the expected agreement between two or 
more coders. The κW statistic has the same 
interpretation as the kappa statistic, but 
permits the differential weights of cell 
frequencies reflecting patterns of coder 
agreement. The ANOVA (binary) ICC 
measures the degree to which two or more 
ratings are consistent. The KR-20 statistic 
is a reliability estimator based on the ratio 
of variances. That being said, it is 
important to note that the reliability of 
binomial coding patterns is invalid if 
based on continuous agreement statistics 
(Maclure & Willett, 1987).  
 Some researchers have developed tools 
for interpreting reliability coefficients, but 
do not provide guidelines for determining 
the sufficiency of such statistics. 
According to Landis and Koch (1977), 
coefficients of 0.41-0.60, 0.61-0.80, and 
0.81-1.00 have ‘Moderate,’ ‘Substantial,’ 
and ‘Almost Perfect’ agreement, in that 
order. George and Mallery (2003) indicate 
that reliability coefficients of 0.9-1.0 are 

“Excellent,” of 0.8-0.9 are “Good,” of 0.7-
0.8] are “Acceptable,” of 0.6-0.7 are 
“Questionable,” of 0.5-0.6] are “Poor,” 
and less than 0.5 are “Unacceptable,” 
where coefficients of at least 0.8 should be 
a researcher’s target.  
 According this tool, the obtained κ of 
0.891 demonstrates ‘Almost Perfect’ to 
‘Good’ agreement between the coders. The 
κW statistic of 0.423 demonstrates ‘Fair’ to 
‘Unacceptable’ agreement between the 
coders. The obtained ANOVA ICC of 0.714 
demonstrates ‘Substantial’ to ‘Acceptable’ 
agreement between the coders. Last, the 
obtained KR-20 of 0.807 demonstrates 
‘Substantial’ to ‘Good’ agreement between 
the coders. 
 The resulting question from these 
findings is “Are these reliability estimates 
sufficient?” The answer is dependent 
upon on the focus of the study, the 
complexity of the theme(s) under 
investigation, and the comfort level of the 
researcher. The more complicated the 
topic being investigated, the lower the 
proportion of observed agreement 
between the coders may be. According to 
Nunnally (1978), Cascio (1991), and 
Schmitt (1996), reliabilities of at least 
0.70 are typically sufficient for use. The κ 
statistic, ANOVA ICC, and KR-20 meet 
this cutoff, demonstrating acceptable 
reliability coefficients. 
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 What happens if the researcher has an 
acceptable level of reliability in mind, but 
does not meet the requirement? What 
methods should be employed in this 
situation? If a desired reliability 
coefficient is not achieved, it is 
recommended that the coders revisit their 
coding decisions on patterns of 
disagreement on the presence of themes 
in the binomial data (e.g., interview 
responses). After the coders revisit their 
coding decisions, the reliability coefficient 
would be re-estimated. This process 
would be recursive until a desired 
reliability coefficient is achieved. 
Although this process may seem tedious, 
the confidence in which the coders 
identified themes increases and thus 
improves the interpretability of the data. 
 
Future Research 
 
Three areas of research are recommended 
for furthering the use of reliability 
estimators for discrete coding patterns of 
binomial responses (e.g., qualitative 
interview data). In the current paper 
estimators that can be used to gauge 
agreement pattern reliability within a 
theme were presented. The development 
of quality reliability estimators applicable 
across themes should be further 
developed and investigated. This would 
allow researchers to determine the 
reliability of one’s grounded theory, for 
example, as opposed to a component of 
the theory. 
 Sample size estimation methods also 
should be further developed for reliability 
estimators, but are presently limited to 
the κ statistic (Bonett, 2002; Feldt & 
Ankenmann, 1998). Sample size 
estimation would inform the researcher, 
in the example of the current paper, as to 
how many interviews should be conducted 
in order to achieve a desired reliability 

coefficient on their coded qualitative 
interview data with a certain likelihood 
prior to the initiation of data collection. 
 The current study simulated coder 
agreement data that follow a binomial 
probability density function. Further 
investigation should be conducted to 
determine if there are more appropriate 
discrete distributions to model agreement 
data. Possible densities may include the 
geometric, negative binomial, beta-
binomial, and Poisson, for example. This 
development could lead to better 
estimators of reliability coefficients (e.g., 
for the investigation of ‘rare’ events). 
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