ROLE OF INTEGRATED PET/CT IN DETECTING RECURRENT OVARIAN CANCER IN PATIENTS WITH RISING CA-125 LEVELS

Fozia Naz1, Ahmad Murtaza2, Khurram Aftab3, Zia S. Faruqui1, Humayun Bashir4

1Department of Radiology and 4Nuclear Medicine Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan; 2Department of Radiology King Saud University Hospital, Riyadh, Saudi Arabia; 3Department of Radiology, Sheikh Khalifa Medical City Abu Dhabi, UAE

Received: 1 January 2015 / Accepted: 11 September 2015

Abstract:

Purpose: To assess the sensitivity and diagnostic accuracy of integrated PET/CT in detecting recurrent ovarian cancer in treated patients presenting with rising CA-125 levels during clinical follow-up, and compare it with those of CT alone.

Materials and Methods: Retrospective study. We evaluated 45 patients with pathologically proven ovarian carcinoma who underwent PET/CT during October 2010 and Nov 2013 at our institution for suspected relapse; IRB deemed that approval for this retrospective study was not required. Out of these, 35 patients who presented with rising CA-125 levels during clinical follow-up were included in this study. Remaining 10 patients were excluded as they had normal CA-125 levels. At least three previous consecutive CA-125 readings and initial conventional imaging prior to FDG-PET/CT was noted. Sensitivity and diagnostic accuracy for tumour detection with PET/CT and CT alone was calculated; histological analysis after biopsy/ second look surgery or clinical/radiologic follow-up/response to chemotherapy was taken as reference standard. K statistics (Cohen K) was used for statistical analysis.

Results: Out of 35 patients with suspected relapse 1 patient was lost to follow up. 30 patients were documented to have relapsed while in 4 patients recurrence not identified either on CT or PET-CT and they were proved to be disease free on two year follow up. Amongst these relapsed patients, 10/30 cases were proven histologically; 3 with imaging guided biopsy and 7 with second look surgery, whereas 20/30 were confirmed on clinical/radiological follow up (ranging from 3-6 months) or by response to chemotherapy on subsequent imaging. Out of 30 patients with relapse, PET-CT highlighted recurrence in 27. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of integrated PET/CT was calculated to be 90%, 75%, 96%, 50% and 88% respectively. CT alone detected recurrence in 20 patients. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of CT was calculated to be 73.3%, 100%, 100%, 33%, and 76% respectively.

Conclusion: PET/CT is a highly sensitive and accurate post therapy surveillance modality for detection of recurrent ovarian cancer in patients with rising tumour markers as compared to CT alone.

Keywords: Ovarian cancer, recurrence, FDG, PET/CT, CA125

Introduction:

Ovarian cancer is commonest gynaecological malignancy [1]. Treatment of choice is cytoreductive surgery with post-operative chemotherapy such as paclitaxel and taxane preparations [2,3] Despite adequate treatment and complete response, recurrence is common. Estimated recurrence rate is 60% in patients with advanced stage at the time of diagnosis. Patients usually develop abdominal relapse [4]. Clinical follow-up of ovarian cancer patients is done with serial measurements of the serum CA-125 levels. In patients with elevated CA-
125 levels at baseline that normalize post treatment, progressively increasing CA-125 levels are indicative of recurrent ovarian cancer, even in the absence of clinical or radiologic findings that warrants detailed evaluation. [5,6]. Multiple imaging modalities are used to detect cancer recurrence. It includes ultrasonography, CT scan, magnetic resonance imaging (MRI), and positron emission tomography (PET). Small-volume disease <2 cm can be missed on anatomic imaging alone due to the visceral metastasis. Functional imaging that uses uptake of radioisotope labelled glucose by tumour helps to identify recurrent disease as it increases contrast between tumour and normal structures [7,8]. Metastases from ovarian cancer are primarily peritoneal rather than parenchymal sites. Small-volume metastatic deposits on the visceral surfaces are diagnostic challenge if interpreted with anatomic imaging alone like CT and MRI [9,10]. Integrated PET/CT is superior for detection of ovarian cancer relapse than anatomic imaging like CT and MRI, with the use of a metabolic tracer and simultaneous acquisition of anatomic data to determine the exact location of lesions [11]. Moreover, compared to anatomic imaging PET/CT is used to survey the entire body to detect recurrence in multiple sites that is crucial for further treatment planning to avoid further relapse. The purpose of the study is to evaluate and compare the diagnostic accuracy of integrated PET-CT to CT alone in patients suspected for recurrent ovarian carcinoma based on elevated tumour markers.

Methods and Materials:

Patients:

Retrospective study evaluated 45 patients of ovarian carcinoma who underwent PET/CT during October 2010 to November 2013. Out of these, 35 patients who presented with rising CA-125 levels during clinical follow-up were included in this study. Remaining 10 patients were excluded as they had normal CA-125 in spite of the histopathologically proven ovarian carcinoma.

PET/CT technique:

This was retrospective study collecting data from archives/PACS, Department of Radiology. The protocol to acquire PET/CT in SKMCH is more than 4-hours fast before the exam. Patients are asked to avoid high protein diet 24 hours prior to scan. After recording demographic data, history, physical examination, informed consent and blood sugar level test, the patient rests for a minimum of 15 minutes, in order to reduce any muscular activity, which might interfere with tracer uptake. An intravenous injection of 18F- FDG is then administered. After 45 minutes, the patient is positioned in supine for PET-CT imaging. X-ray tomogram acquired followed by whole body CT imaging with contrast and then PET imaging thereafter. PET-CT software reconstruction done and only CT, only PET and fused PET-CT images were displayed. A whole body scan, which usually is starts from mid-thigh to the top of the head, is acquired. FDG imaging protocol acquires slices with a thickness of 2 to 3 mm. All images are interpreted on a picture archiving and communication system (PACS) workstation. Curved and multi-planar reformations are obtained at a dedicated post-processing workstation.

Image analysis:

The images were visually assessed by a board-certified radiologist and nuclear medicine physician with PET expertise independently. Both FDG-PET and the CT portion of the PET/CT are interpreted in independent sessions by radiologist and nuclear physician and they were not aware of each other’s findings. An increase in FDG uptake was compared with the corresponding anatomical finding on CT scan images. An abnormal CT finding that with increase in FDG uptake was interpreted as positive for recurrent disease. Any structural abnormality found on CT but without FDG uptake on PET imaging was interpreted as negative findings.

Results:

Out of 35 patients with suspected relapse on the basis of raised CA-125 levels, 1 patient was lost to follow up. 30 patients were documented to have relapse on
imaging while 4 patients were proved to be disease free on two year follow up. Out of 30 patients with relapse PET-CT highlighted possible recurrence in 28. 1 patient was false positive as detected hypermetabolic nodes were because of inflammation. PET-CT missed recurrence in 3 patients because of small size of lesion who subsequently presented with disease relapse large enough to be identifiable on anatomical imaging alone. Amongst these, 10/30 cases were histologically proven with imaging guided biopsy and 7 with second look surgery, whereas 20/30 were confirmed on clinical/radiological follow up (ranging from 3-6 months) or by response to chemotherapy on subsequent imaging. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of integrated PET/CT was calculated to be 90%, 75%, 96%, 50% and 88%. CT alone correctly detected recurrence in 22 patients. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of CT was calculated to be 73.3%, 100%, 100%, 33%, and 76%. (Table 1, graph 1) There were 8 false negative patients. 5/8 false negative patients were positive on PET-CT while 3/8 were negative on both CT and PET-CT and subsequently presented with relapse on continued follow up.

Table 1:

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>PET-CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>73.30%</td>
<td>90%</td>
</tr>
<tr>
<td>Specificity</td>
<td>100%</td>
<td>75%</td>
</tr>
<tr>
<td>Diagnostic accuracy</td>
<td>76%</td>
<td>88%</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>100%</td>
<td>96%</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>33%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Discussion:

According to the National Cancer Institute consensus statement for ovarian cancer, the follow-up for treated patients of ovarian cancer should include routine clinical history, physical examination, ultrasound, and tri-monthly serum CA 125 determination for the first 2 years, then less frequently afterwards[12]. But one study showed in surveillance programs its pooled specificity was
relatively low 0.69 [13]. Therefore, non-recurrent conditions, such as infections may produce elevated levels. Similar thing noted in 4 of our patients as CA-125 levels were elevated while imaging did not detect any recurrence and the patient remained asymptomatic on two year follow up. Raised CA-125 levels in those patients were because of TB that was proved histologically.

Most of the clinicians perform surveillance in treated ovarian cancer patients with biochemical markers like CA-125 levels and imaging. Ultrasound, CT, MRI and PET-CT all have been used for this purpose. Trans-vaginal ultrasound is superior to trans-abdominal scan to detect recurrence. Most of the studies concluded that diagnostic trans-abdominal ultrasound examination is unreliable modality for the detection of ovarian cancer recurrence particularly for the deposits located in the abdominal and pelvic peritoneum [14]. The sensitivity of ultrasonography ranges from 74 to 96%; its specificity ranges from 23 to 80% [15].

CT scan uses morphological features to detect local pelvic recurrence and distant visceral/peritoneal metastasis. But, it is difficult to detect smaller deposits particularly those located on the visceral surface of bowel and micro metastases in radiologically benign appearing lymph nodes. It is also quite difficult to separately identify lesion from adjacent viscera as anatomy is usually distorted post operatively. Spiral CT usually has high sensitivity of 85%–93% for the detection of larger peritoneal deposits; But, its sensitivity is low ranging from 25%–50% for sub-cm deposits [16,17].

Positron emission tomography detects tumour recurrence because of increased radiotracer uptake by tumour cells on account of increased metabolic activity. But, anatomical details are lacking. Combined PET-CT improves diagnostic accuracy as it combines both features thus becomes the most effective modality for the detection of recurrence and further treatment planning accordingly. PET/CT (sensitivity, 91%; specificity, 88%) performed better than CT (sensitivity, 79%; specificity, 84%) or MRI (sensitivity, 75%; specificity, 78%) [18].

According to our study sensitivity of PET-CT and CT is 90% and 66.7% respectively. PET-CT missed recurrence in 3 because of small size of lesion who subsequently presented with disease relapse large enough to be identifiable on anatomical imaging alone.

In all the patients with recurrence detected on CT and PET-CT both, PET-CT still helped in treatment planning either by identifying other sites of disease or confidently excluding multiple tumour implants. It includes patients in whom there was solitary site of recurrence on CT while PET-CT detected recurrence at multiple sites who were offered chemotherapy rather than surgery and the patients who underwent surgery because of limited disease on PET-CT.

Our study has shown that PET/CT is a sensitive tool to assist in the early identification and recurrent ovarian cancer, amenable to secondary cytoreduction. [Fig 1A,1B]

The precise PET–CT localization of suspicious FDG uptake could lead to improved assessment of the extent of recurrent disease, thus allowing for optimized treatment plan for these patients.

Conclusion: FDG PET/CT is a highly sensitive and accurate for post therapy surveillance in patients suspected of recurrent ovarian cancer with rising tumour markers as compared to CT alone.

References:

